Abstracts & Keywords


Aims & Scope
Editorial Board
Contents & Abstracts
Submitting Your Paper
Copyright & Permissions
Subscriptions and Orders


Back Up Next

Principal axes of M-DOF structures
Part II: dynamic loading

Zach Liang1 and George C. Lee2

  1.  Department of Civil Structural and Environmental Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
  2. Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo, State University of New York, Buffalo, New York, USA

Abstract: This paper is the second in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads. The primary purpose of this series is to understand the magnitude of the dynamic response of structures to enable better design of structures and response modification devices/systems. Under idealized design conditions, the structural responses are obtained by using single direction input ground motions in the direction of the intended response modification devices/systems, and by assuming that the responses of the structure is decoupleable in three mutually perpendicular directions. This standard practice has been applied to both new and retrofitted structures using various seismic protective systems. Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects of which torsion is a component) of the dynamic response of structures. In order to quantify such effects, it is necessary to examine the principal axes of structures under both static and dynamic loading. In this two-part series, the first paper is concerned with static loading, which provides definitions and fundamental formulations, with the conclusion that cross effects of a statically loaded M-DOF structure resulting from the lack of principal axes are of insignificant magnitude. However, under dynamic or earthquake loading, a relatively small amount of energy transferred across perpendicular directions is accumulated, which may result in significant enlargement of the structural response. This paper deals with a formulation to define the principal axes of M-DOF structures under dynamic loading and develops quantitative measures to identify cross effects resulting from the non-existence of principal axes.

Keywords: principal axes of M-DOF structures; structural response couplings; cross effect; theoretical base; dynamic loading; peak response estimation

Back Up Next

horizontal rule

Copyright 2009 IEM. Journal of Earthquake Engineering and Engineering Vibration. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without written permission from the Publisher. Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under the terms of a license issued by the National Reproduction Rights Organization of China.