Abstracts & Keywords


 

Home
Aims & Scope
Editorial Board
Contents & Abstracts
Submitting Your Paper
Copyright & Permissions
Subscriptions and Orders

 

Back Up Next

Ductility demands on buckling-restrained braced frames under earthquake loading

Larry A. Fahnestock, Richard Sause, James M. Ricles and Le-Wu Lu

Department of Civil and Environmental Engineering, ATLSS Center, Lehigh University, Bethlehem, Pennsylvania, USA

Abstract: Accurate estimates of ductility demands on buckling-restrained braced frames (BRBFs) are crucial to performance-based design of BRBFs. An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center, Lehigh University to prepare for an upcoming experimental program. The analysis program DRAIN-2DX was used to model a one-bay, four-story prototype BRBF including material and geometric nonlinearities. The buckling-restrained brace (BRB) model incorporates both isotropic and kinematic hardening. Nonlinear static pushover and time-history analyses were performed on the prototype BRBF. Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results. Particular emphasis was placed on global ductility demands and ductility demands on the BRBs. These demands were compared with anticipated ductility capacities. The analysis results, along with results from similar previous studies, are used to evaluate the BRBF design provisions that have been recommended for codification in the United States. The results show that BRB maximum ductility demands can be as high as 20 to 25. These demands significantly exceed those anticipated by the BRBF recommended provisions. Results from the static pushover and time-history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5. Modifications to the testing protocol are recommended.

Keywords: buildings; buckling-restrained braced frames; buckling-restrained braces; structural response; seismic response ductility demand; seismic codes and standards

Back Up Next

horizontal rule

Copyright 2009 IEM. Journal of Earthquake Engineering and Engineering Vibration. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without written permission from the Publisher. Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under the terms of a license issued by the National Reproduction Rights Organization of China.