Abstracts & Keywords


 

Home
Aims & Scope
Editorial Board
Contents & Abstracts
Submitting Your Paper
Copyright & Permissions
Subscriptions and Orders

 

Back Up Next

Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction

T. Shenthan1, R. Nashed1, S. Thevanayagam1 and G. R. Martin2

  1. Department of Civil Engineering, UB, USA

  2. Department of Civil Engineering, USC, Los Angeles, CA, USA

Abstract: The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densification during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils.

Keywords: liquefaction mitigation; silty soils; composite stone columns; dynamic compaction

Back Up Next

horizontal rule

Copyright 2009 IEM. Journal of Earthquake Engineering and Engineering Vibration. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without written permission from the Publisher. Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under the terms of a license issued by the National Reproduction Rights Organization of China.