Retrofit of an Existing Californian Hospital to Immediate Occupancy Standards

One Year Later...Again

R. Jay Love, S.E.
Degenkolb Engineers
MCEER 2006 Annual Meeting
Diagnostic & Treatment Building

- Designed in 1974 to Hospital Seismic Safety Act
- Two stories plus basement
- 96,500 square feet
Level 2 Trauma Center—“Entryway” to the Hospital

- **1st Floor**
 - Emergency Dept. - 55,000 ED annual visits
 - Radiology, MRI, CT Scan
 - G.I. Laboratory

- **2nd Floor**
 - Surgery
 - Cath Lab

- **Basement**
 - Materials Management/ Medical Supplies
 - Central PBX, IT Server Room
 - Pharmacy
 - Morgue
1994 Northridge Earthquake
SMRF Connection Damage

- Northridge Earthquake
 - Design event based on nearby ground acceleration records
 - This building never lost functional ability
 - Infrastructure problems at the site

- Connection damage discovered as part of SB 1953 Structural Evaluation – April 2000
 - 1st floor – 1 connection in N-S frame
 - 2nd floor – 7 connections (6 in N-S frames)
 - Roof – 6 connections (5 in N-S frames)
Policy

- **Title 24 – California Building Code** – improve structure to meet current hospital code performance requirements
 - **Performance Goal - Immediate Occupancy performance**
 - Seismic Performance Category 5
 - 475 year event
 - **FEMA Funding Requirement**
 - Approach meets FEMA requirements for hazard mitigation
 - Tied to immediate occupancy requirement
Structural Strengthening Approach

- Modify the lateral system from Steel Moment Resisting Frame (SMRF) to Steel Plate Shear Wall (SPSW)
 - Adds strength
 - Adds stiffness
 - Focuses tension yielding / plate buckling in steel plate
Analysis model with Finite Elements

- New steel plate walls at 1st & 2nd levels
- New concrete shear walls in two basement locations
Project Progress – 2005 - 2006

- OSHPD approval and permit issued August 2005
- Construction Started in September – 2005
- Team
 - Clark Construction – General Contractor
 - Jensen Partners – Owner’s Project Managers
 - Design Team
 - OSHPD
Construction Issues

● 24 hour-a-day hospital operations
 ■ 55,000 ED visits annually
● Construction separated into 23 phases
 ■ Work on three levels plus roof
 ■ 106 discrete work areas
● 28 Month Schedule
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NHMC-D&T schedule</td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
</tr>
<tr>
<td>1</td>
<td>New Endoscopy Suite - F Towe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Basement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Phase 1 - General storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Phase 2 - Service Dock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Phase 2B - Soiled Linen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Phase 3 - Pharmacy, IT, Li</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Phase 4 - PBX - Purchasin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Phase 13 - Restroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Phase 14 - Restroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Level 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Phase 5A - Nursing Office</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Phase 5B - New Cardiac S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Phase 5C - Lobby</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Exterior Exit Stair - Service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Phase 6 - Radiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Exhaust Fan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Phase 9 - ED & Rad Rm #</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Phase 11 - ED & Staff Loui</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Phase 16 - Staff Toilet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Phase 17 - Patient Toilet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Phase 18 Patient Toilet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Level 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Phase 7 - OR Offices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Phase 8 - Cath Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Phase 10 - Cysto /Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Phase 12 - OR Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Phase 19 - Patient Toilet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Phase 20 - Storage Room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Phase 21 - Womens Locke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Roof Level</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basement Level Shear Wall
Phase 2 - Loading Dock
Basement Level

- Boundary element anchor rods connected steel plate walls above
Basement – Phase 3

- Temporary construction partitions on left
- New reinforced concrete boundary element around the anchor rods
1st Floor Phases – ED, Radiology
Contractor’s Technical Challenges

- **Existing Conditions Information**
 - Expensive field investigation prior to construction
 - Mitigate/avoid the surprises
- **Temporary structural shoring**
 - Elevated slab and beam shoring
- **Temporary protection of MEP Systems**
 - Planned system shut downs
 - Monitor critical systems for immediate notification
Contractor’s Logistical Problems

- **Temporary Utilities to Work Areas**
 - Power and ventilation lines to each work area
 - Locate utility lines behind walls, above ceilings to avoid occupied spaces and corridors
 - Transporting major materials through corridors
 - Subs required to have one day’s materials in the building at all times. Remaining materials stored off-site
Safety

- Patients and Staff
 - Modify work procedures
 - Schedule work to control exposure to dust, fumes, smoke, noise, etc.

- Construction Workers
 - Nondestructive testing to locate hidden power lines
Regulatory Challenges

- Maintain compliance with DHS, OSHPD, JCAHO, HIPAA, Local Fire Marshal
 - Uncovering existing non-compliant conditions in areas not intended for work
 - Negotiate remedial measures
- Maintaining Schedule
 - Design changes/modifications require OSHPD approval in advance
 - Field Reviews – Area Compliance Officer, District Structural Engineer
 - Expedited Office Reviews
Rough Project Costs

<table>
<thead>
<tr>
<th>Direct Costs</th>
<th>$ psf</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demo, infection control</td>
<td>$10</td>
<td>5%</td>
</tr>
<tr>
<td>Structural</td>
<td>$25</td>
<td>13%</td>
</tr>
<tr>
<td>Architectural</td>
<td>$40</td>
<td>20%</td>
</tr>
<tr>
<td>MEP</td>
<td>$30</td>
<td>15%</td>
</tr>
<tr>
<td>Gen Admin</td>
<td>$35</td>
<td>18%</td>
</tr>
<tr>
<td>Soft Costs</td>
<td>$15</td>
<td>8%</td>
</tr>
<tr>
<td>Contingencies, allowances</td>
<td>$40</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>$195</td>
<td>-</td>
</tr>
</tbody>
</table>
Defining the Goal...

- What does it mean to meet “immediate occupancy”?
- What level of structural damage causes a hospital to lose its immediate occupancy status?
 - Do we have to meet “current code” to achieve immediate occupancy?
 - How much and what type of structural damage can we allow and still provide immediate occupancy?
 - Foundations
 - Structural steel
Challenging Issues

- **Funding Issues**
 - How much money should we spend to achieve this goal?
 - Should the age, or expected remaining life, of the building enter into the consideration?
 - Building is now 30 years old.
 - Should there be a cap on costs to meet immediate occupancy requirements?
 - Similar to ADA compliance costs?