# TABLE OF CONTENTS

## 1 INTRODUCTION

1.1 General
1.2 History of Seismic Provisions in Bridge Design Practice
1.3 Introduction to Steel Truss Highway Bridges
  1.3.1 Steel Truss Highway Bridge Characteristics
  1.3.2 Differences Between Steel Truss Bridges and Steel Arch Bridges
  1.3.3 Structural Classifications of Steel Highway Truss Bridges
  1.3.4 Types of Simple-Span Steel Highway Truss Bridges
  1.3.5 Types of Continuous and Multiple Span Trusses
1.4 Structural Characteristics of Truss Bridges
  1.4.1 Through Trusses
  1.4.2 Deck and Double-Deck Trusses

## 2 RETROFITTING PHILOSOPHY AND PROCESS

2.1 General
2.2 Seismic Classification of Truss Bridges
  2.2.1 Seismically Classifying Truss Bridges
  2.2.2 Classification of Seismically Complex Truss Bridges
  2.2.3 Identification of Seismically Complex Truss Bridges
2.3 Seismic Performance Levels
2.4 Seismic Hazard Levels
2.5 Bridge Importance
2.6 Service Life Categories
2.7 Selection of Performance Levels
2.8 Seismic Retrofit Strategies, Approaches and Measures
2.9 Seismic Retrofitting Design Process

## 3 SCREENING AND PRIORITIZATION

3.1 General
3.2 Screening of Truss Bridges
3.3 Prioritization of Seismically-Complex Truss Bridges
3.4 Seismic Rating Parameters for SC Truss Bridges
  3.4.1 Method of Indices
  3.4.2 Method of Expected Damage

## 4 STRUCTURAL ANALYSIS

4.1 General
  4.1.1 Overall Approach to Analysis and Evaluation of Truss Bridges
  4.1.2 Analysis Objectives
  4.1.3 Seismic Performance Measures and Evaluation
  4.1.4 Analysis Types
4.2 Methods of Analysis
  4.2.1 Demand Analyses
  4.2.2 Capacity Analyses
4.3 Modeling Techniques
  4.3.1 Global Model Development
4.3.2 Truss Superstructure Modeling 55
4.3.3 Pier and Tower Models 55
4.3.4 Response Modification Devices 55
4.3.5 Expansion Joint Impact and Damping Devices 58
4.3.6 Properties of Built-Up Members 59
4.3.7 Modeling of Tension-Only Members (Eyebars) 62
4.3.8 Modeling of Buckling of Compression Members 62
4.3.9 Inelastic Response of Built-Up Members 63

5 DESIGN PARAMETERS 65
5.1 General 65
5.2 Steel Used for Truss Bridges 65
  5.2.1 Nominal, Expected, and Over-Strength Material Properties 66
5.3 Design Methods 70
  5.3.1 Allowable Stress Design (ASD) 70
  5.3.2 Load Factor Design (LFD) 70
  5.3.3 Load and Resistance Factor Design (LRFD) 70
  5.3.4 Choice of Design Method for Seismic Retrofitting 71
5.4 Categorization of Members 71
  5.4.1 Bracing and Secondary Members 72
5.5 Design Requirements 73
  5.5.1 Effective Length Factors 73
  5.5.2 Limiting Width-to-Thickness Ratios 73
  5.5.3 Resistance Factors 76

6 EVALUATION OF MEMBERS, CONNECTIONS, AND SUBSYSTEMS 77
6.1 General 77
6.2 Member Capacity 78
  6.2.1 Axial Strength 78
  6.2.2 Splice Capacity 84
  6.2.3 Shear Strength 84
  6.2.4 Flexural Strength 85
  6.2.5 Ductility Capacity 86
6.3 Connection Capacity 91
  6.3.1 Riveted Connections 91
  6.3.2 Bolted Connections 92
  6.3.3 Welded Connections 93
  6.3.4 Pinned Connections 93
  6.3.5 Gusset Plates 93
  6.3.6 Fracture of the Net Section 94
6.4 Displacement Capacity of Portal and Sway-Bracing Systems 94
6.5 Displacement Capacity of Support Towers 94
6.6 Bearings 100
6.7 Shear Locks (Wind Tongues) 100
6.8 Expansion Joints 101
6.9 Capacity/Demand Analysis 102
  6.9.1 Member and Connection Force Capacity/Demand 102
  6.9.2 Member Ductility Capacity/Demand 106
  6.9.3 Subsystem Displacement Capacity/Demand 106
# Retrofit Measures, Approach, and Strategy

## 7 General

- **7.1 Retrofit Strategies**
  - 107
- **7.1.1 Constructability**
  - 108
- **7.1.2 The “Do-Nothing” Retrofit, and Full-Replacement Strategy**
  - 109
- **7.1.3 Seismic Retrofitting Design Process**
  - 110

## 7.2 Truss Members

- **7.2.1 General**
  - 110
- **7.2.2 Chords**
  - 113
- **7.2.3 Primary Diagonals and Verticals**
  - 114
- **7.2.4 Eyebars, Hangers, and Other Tension-Only Members**
  - 114
- **7.2.5 Bracing and Secondary Members**
  - 115

## 7.3 Connections

- **7.3.1 Existing Connections and Splices**
  - 115
- **7.3.2 New Connections and Splices**
  - 115
- **7.3.3 Riveted Connections**
  - 115
- **7.3.4 Bolted Connections**
  - 117
- **7.3.5 Welded Connections**
  - 117
- **7.3.6 Pinned Connections**
  - 117
- **7.3.7 Gusset Plates**
  - 117

## 7.4 Deck Systems

- **7.4.1 Potential Vulnerabilities**
  - 120
- **7.4.2 Retrofit Measures**
  - 120

## 7.5 Lateral Bracing Systems

- **7.5.1 Potential Vulnerabilities**
  - 121
- **7.5.2 Retrofit Measures**
  - 122

## 7.6 Portal Braced Frame Systems

- **7.6.1 Potential Vulnerabilities**
  - 122
- **7.6.2 Retrofit Measures**
  - 125

## 7.7 Sway Frames

- **7.7.1 Potential Vulnerabilities**
  - 127
- **7.7.2 Retrofit Measures**
  - 128

## 7.8 Concrete Pier Shafts, Cellular Steel Shafts, and Steel Braced Towers

- **7.8.1 Potential Vulnerabilities**
  - 128
- **7.8.2 Retrofit Measures**
  - 129

## 7.9 Support Bearings

- **7.9.1 Potential Vulnerabilities**
  - 131
- **7.9.2 Retrofit Measures**
  - 132

## 7.10 Shear Locks (Wind Tongues)

- **7.10.1 Potential Vulnerabilities**
  - 134
- **7.10.2 Retrofit Measures**
  - 135

## 7.11 Expansion Joint Devices

- **7.11.1 Potential Vulnerabilities**
  - 135
- **7.11.2 Retrofit Measures**
  - 136

## 7.12 Seismic Isolation

- 137

## 7.13 Historic Preservation Issues

- **7.13.1 Laced Members**
  - 138
- **7.13.2 Gusset Plates**
  - 139
TABLE OF CONTENTS (CONTINUED)

7.13.3 Replacement of Existing, Visible Concrete 140
7.13.4 New, Visible Concrete 140
7.14 Cost Considerations 140

8 CASE STUDIES 141
Case Study No. 1: Carquinez Bridge (1958 Span) 142
Case Study No. 2: Benicia – Martinez Bridge 144
Case Study No. 3: Richmond – San Rafael Bridge 146
Case Study No. 4: Million Dollar Bridge 149
Case Study No. 5: Hernando DeSoto Bridge 151
Case Study No. 6: Aurora Avenue Bridge 153
Case Study No. 7: Cooper River Bridge 155

9 GLOSSARY 159

10 REFERENCES AND BIBLIOGRAPHY 165
10.1 References 165
10.2 Bibliography 169