TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION ..</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Hazard Assessment of Nuclear Power Plants</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Seismic Performance Assessment ...</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Conventional and Base Isolated Nuclear Power Plants</td>
<td>1</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Seismic Performance-Based Design of Buildings</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Blast Assessment ..</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Objectives ..</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Organization of the Report ..</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>SAMPLE NPP REACTOR BUILDINGS ..</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Conventional Reactor Building ..</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Base Isolated Reactor Building ...</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Key Secondary Systems ..</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGIES FOR SEISMIC PERFORMANCE ASSESSMENT</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction ...</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Conventional Methodology for Seismic Performance Assessment of NPPs ...</td>
<td>14</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Seismic Probabilistic Risk Assessment ...</td>
<td>14</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Introduction ..</td>
<td>14</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Seismic Hazard Analysis ..</td>
<td>16</td>
</tr>
<tr>
<td>3.2.1.3</td>
<td>Component Fragility Evaluation ..</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1.4</td>
<td>Plant-System and Accident-Sequence Analysis</td>
<td>18</td>
</tr>
<tr>
<td>3.2.1.5</td>
<td>Consequence Analysis ..</td>
<td>22</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Development of Fragility Curves ..</td>
<td>22</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Fragility Model ...</td>
<td>22</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Developing Fragility Curves ..</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>A New Procedure for Seismic Performance Assessment of NPPs</td>
<td>29</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Introduction ..</td>
<td>29</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>A Shortcoming of the Conventional Methodology</td>
<td>29</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Overview of the New Procedure ..</td>
<td>30</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Types and Products of Performance Assessment</td>
<td>31</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Intensity-Based Assessment ...</td>
<td>31</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Scenario-Based Assessment ...</td>
<td>32</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Time-Based Assessment ...</td>
<td>32</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Methodology for Performance Assessment ..</td>
<td>33</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Step 1: Perform Plant-System and Accident-Sequence Analysis and</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Develop Component Fragility Curves ...</td>
<td></td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Step 2: Characterize Earthquake Shaking ..</td>
<td>34</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>Step 3: Simulate Structural Response ...</td>
<td>35</td>
</tr>
<tr>
<td>3.3.3.4</td>
<td>Step 4: Assess Damage of NPP Components ..</td>
<td>37</td>
</tr>
<tr>
<td>3.3.3.5</td>
<td>Step 5: Compute the Risk ..</td>
<td>39</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Scaling Earthquake Ground Motions for Nonlinear Response-History</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Analysis ...</td>
<td></td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Intensity-Based Assessment ..</td>
<td>43</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Scenario-Based Assessment ..</td>
<td>44</td>
</tr>
<tr>
<td>3.3.4.3</td>
<td>Time-Based Assessment ...</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>SCALING GROUND MOTIONS FOR PERFORMANCE ASSESSMENT</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction ...</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>State of the Art ..</td>
<td>51</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Probabilistic Seismic Hazard Analysis and Uncertainties in Spectral Demands</td>
<td>51</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Existing Procedures for Selecting and Scaling Ground Motions</td>
<td>52</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Recent Studies ..</td>
<td>54</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Epsilon Scaling and the Conditional Mean Spectrum</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Scaling Ground Motions for Response-History Analysis</td>
<td>60</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Optimal Scaling Procedure ...</td>
<td>60</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Numerical Models ...</td>
<td>60</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Near-Fault and Far-Field Seed Ground Motions</td>
<td>61</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Dataset ..</td>
<td>61</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Epsilon and Spectral Shape ..</td>
<td>61</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Existing Procedures for Scaling Ground Motions</td>
<td>73</td>
</tr>
<tr>
<td>4.3.4.1</td>
<td>Method 1: Geometric-Mean Scaling of Pairs of Ground Motions (Bins 1a and 2a)</td>
<td>73</td>
</tr>
<tr>
<td>4.3.4.2</td>
<td>Method 2: Spectrum Matching (Bins 1b and 2b)</td>
<td>76</td>
</tr>
<tr>
<td>4.3.4.3</td>
<td>Method 3: $\text{Sa}(T_1)$ Scaling (Bins 1c and 2c)</td>
<td>79</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT’D)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.5</td>
<td>The Distribution-Scaling Method Using Spectrum-Matched Motions</td>
<td>84</td>
</tr>
<tr>
<td>4.3.5.1</td>
<td>Introduction</td>
<td>84</td>
</tr>
<tr>
<td>4.3.5.2</td>
<td>Response-History Analysis Using the D-scaling Method</td>
<td>88</td>
</tr>
<tr>
<td>4.3.5.3</td>
<td>Modification Factors</td>
<td>105</td>
</tr>
<tr>
<td>4.3.5.4</td>
<td>Response-History Analysis Using the D-Scaling Method and the Modified Stripes</td>
<td>106</td>
</tr>
<tr>
<td>4.3.6</td>
<td>The D-scaling Method Using Actual Earthquake Records</td>
<td>110</td>
</tr>
<tr>
<td>4.3.6.1</td>
<td>The Scaling Procedure</td>
<td>110</td>
</tr>
<tr>
<td>4.3.6.2</td>
<td>Response-History Analysis Results</td>
<td>121</td>
</tr>
</tbody>
</table>

5

SEISMIC PERFORMANCE ASSESSMENT OF THE SAMPLE NPP REACTOR BUILDINGS...127

5.1 | Introduction .. 127
5.2 | Intensity-Based Assessment of the Conventional Reactor Building .. 128
5.2.1 | Safe Shutdown Earthquake .. 128
5.2.1.1 | Procedures in Design Guidelines .. 128
5.2.1.2 | The Target Design Spectrum for this Study .. 132
5.2.2 | Selection and Scaling of Ground Motions .. 134
5.2.2.1 | Ground Motions from Tables 4.1 and 4.2 .. 134
5.2.2.2 | Ground Motions generated by SGMS .. 135
5.2.3 | Development of Fragility Curves for the Secondary Systems in the Sample NPP 136
5.2.3.1 | Demand Parameter, Median and Logarithmic Standard Deviations .. 136
5.2.3.2 | Fragility Curves .. 142
5.2.4 | Probability of Unacceptable Performance 146
5.2.4.1 | Fault Tree and Nonlinear Response-History Analysis 146
5.2.4.2 | Calculation of Probability of Unacceptable Performance 147
5.3 | Scenario-Based Assessment of the Conventional and Base Isolated Reactor Building 159
5.3.1 | Introduction .. 159
5.3.2 | Scaling of Ground Motions .. 162
5.3.3 | Analysis Results .. 164
5.3.4 | Probability of Unacceptable Performance 173
5.3.4.1 | Model 1 .. 173
5.3.4.2 | Models 2, 3 and 4 .. 178
TABLE OF CONTENTS (CONT’D)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.4.3</td>
<td>Results Using Modified Mean Fragility Curves</td>
<td>179</td>
</tr>
<tr>
<td>5.4</td>
<td>Time-Based Assessment of the Conventional and Base Isolated Reactor Building</td>
<td>180</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Hazard Curves</td>
<td>180</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Scaling of Ground Motions</td>
<td>182</td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>Model 1</td>
<td>182</td>
</tr>
<tr>
<td>5.4.2.2</td>
<td>Models 2, 3 and 4</td>
<td>184</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Analysis Results</td>
<td>187</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Frequency of Unacceptable Performance</td>
<td>203</td>
</tr>
<tr>
<td>5.4.4.1</td>
<td>Mean Fragility Curves</td>
<td>203</td>
</tr>
<tr>
<td>5.4.4.2</td>
<td>Mean Fragility Curves Modified by R_s</td>
<td>208</td>
</tr>
<tr>
<td>6</td>
<td>BLAST ASSESSMENT OF THE SAMPLE NPP REACTOR BUILDINGS</td>
<td>209</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>6.2</td>
<td>Blast Loading on Structures</td>
<td>210</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Air Shock</td>
<td>210</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Ground Shock</td>
<td>216</td>
</tr>
<tr>
<td>6.3</td>
<td>Blast Loading for the Sample Reactor Buildings</td>
<td>222</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Introduction</td>
<td>222</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Blast Threat</td>
<td>222</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Air Blast Loading</td>
<td>223</td>
</tr>
<tr>
<td>6.3.3.1</td>
<td>Air3D Model</td>
<td>223</td>
</tr>
<tr>
<td>6.3.3.2</td>
<td>Pressure Histories</td>
<td>227</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Ground Shock</td>
<td>233</td>
</tr>
<tr>
<td>6.4</td>
<td>Blast Assessment of the Sample Reactor Buildings</td>
<td>234</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Introduction</td>
<td>234</td>
</tr>
<tr>
<td>6.4.2</td>
<td>LS-DYNA Models for Conventional and Base-Isolated Reactor Buildings</td>
<td>236</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Response of the Sample Reactor Buildings Subjected to Air Blast Loading</td>
<td>238</td>
</tr>
<tr>
<td>6.4.3.1</td>
<td>Globe Response</td>
<td>238</td>
</tr>
<tr>
<td>6.4.3.2</td>
<td>Local Response</td>
<td>240</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Response of the Sample Reactor Buildings Subjected to Ground Shock</td>
<td>242</td>
</tr>
<tr>
<td>6.4.4.1</td>
<td>Global Response</td>
<td>242</td>
</tr>
<tr>
<td>6.4.4.2</td>
<td>Local Response</td>
<td>246</td>
</tr>
<tr>
<td>6.5</td>
<td>Closing Remarks</td>
<td>248</td>
</tr>
</tbody>
</table>
Table of Contents (Cont’d)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SUMMARY AND CONCLUSIONS</td>
<td>251</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>251</td>
</tr>
<tr>
<td>7.2</td>
<td>Scaling of Ground Motions</td>
<td>252</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Summary</td>
<td>252</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Conclusions</td>
<td>253</td>
</tr>
<tr>
<td>7.3</td>
<td>Seismic Performance Assessment</td>
<td>254</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Summary</td>
<td>254</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Conclusions</td>
<td>255</td>
</tr>
<tr>
<td>7.4</td>
<td>Blast Assessment</td>
<td>256</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Summary</td>
<td>256</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Conclusions</td>
<td>257</td>
</tr>
<tr>
<td>8</td>
<td>REFERENCES</td>
<td>259</td>
</tr>
<tr>
<td>Appendix A</td>
<td>CHARACTERISTICS OF THE LOGNORMAL DISTRIBUTION</td>
<td>269</td>
</tr>
<tr>
<td>Appendix B</td>
<td>CORRELATED VECTORS FOR PERFORMANCE ASSESSMENT</td>
<td>273</td>
</tr>
<tr>
<td>B.1</td>
<td>Introduction</td>
<td>273</td>
</tr>
<tr>
<td>B.2</td>
<td>Algorithm</td>
<td>273</td>
</tr>
<tr>
<td>B.3</td>
<td>Matlab Code</td>
<td>275</td>
</tr>
<tr>
<td>Appendix C</td>
<td>NUMBER OF GROUND MOTION RECORDS FOR INTENSITY-BASED ASSESSMENT</td>
<td>277</td>
</tr>
<tr>
<td>C.1</td>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>C.2</td>
<td>Relationship Between n, X, Z and β_f</td>
<td>277</td>
</tr>
<tr>
<td>C.3</td>
<td>Numbers of Ground Motions Used in the Response Analysis for Intensity-Based Assessment</td>
<td>279</td>
</tr>
<tr>
<td>Appendix D</td>
<td>EPSILON AND SPECTRAL SHAPE OF 147 NEAR-FAULT RECORDS</td>
<td>281</td>
</tr>
<tr>
<td>D.1</td>
<td>Near-fault Ground Motion Dataset</td>
<td>281</td>
</tr>
<tr>
<td>D.2</td>
<td>Epsilon (ε) and Spectral Shape for All Records in the Dataset</td>
<td>281</td>
</tr>
<tr>
<td>D.3</td>
<td>An Example of Selecting Ground Motions Using M_H, r and ε</td>
<td>284</td>
</tr>
<tr>
<td>Appendix E</td>
<td>GEOMETRIC-MEAN SCALING METHOD</td>
<td>309</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT’D)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix F</td>
<td>PERFORMANCE ASSESSMENT CONSIDERING VARIATIONS IN ISOLATOR MECHANICAL PROPERTIES</td>
<td>317</td>
</tr>
<tr>
<td>F.1</td>
<td>Treatment of Uncertainty of Isolator Properties for Performance Assessment</td>
<td>317</td>
</tr>
<tr>
<td>F.2</td>
<td>Impact of Choice of Isolator Properties on the Results of a Performance Assessment</td>
<td>318</td>
</tr>
<tr>
<td>Appendix G</td>
<td>AIR BLAST LOADS ON SIMPLE AND COMPLEX OBJECTS</td>
<td>323</td>
</tr>
<tr>
<td>G.1</td>
<td>Introduction</td>
<td>323</td>
</tr>
<tr>
<td>G.2</td>
<td>Simple Objects</td>
<td>323</td>
</tr>
<tr>
<td>G.2.1</td>
<td>Two-Dimensional Case</td>
<td>323</td>
</tr>
<tr>
<td>G.2.2</td>
<td>Three-Dimensional Cases</td>
<td>324</td>
</tr>
<tr>
<td>G.3</td>
<td>Complex Objects</td>
<td>325</td>
</tr>
</tbody>
</table>