TABLE OF CONTENTS

1 INTRODUCTION

2 FINITE ELEMENT MODELS FOR INFILLED FRAMES: DISCRETE APPROACH

 2.1 Literature Review on Finite Element Analysis of Infilled Frames 5

 2.2 Modeling of Masonry Infills ... 10

 2.3 Discrete Modeling of Mortar Joints 13

 2.3.1 Interface elements for masonry composite 13

 2.3.2 Mode-I fracture model and normal direction behavior of mortar joints 15

 2.3.3 Pre-peak model and tangential direction behavior of mortar joints 17

 2.3.4 Determination of the material parameters 19

 2.3.5 Post-peak model and tangential direction behavior of mortar joints 22

 2.3.6 Verification of the interface constitutive model 24

 2.4 Application to an Infilled Frame ... 24

 2.4.1 Frame/wall interface modeling 27

 2.4.2 Comparison between experimental and numerical results 29

 2.5 Summary ... 29

3 FINITE ELEMENT CONTINUUM APPROACHES FOR MASONRY INFILLS

 3.1 Review of Homogenization Techniques 31

 3.2 Elastic Properties For Masonry as a Composite Material 34

 3.2.1 Rheological model for masonry composites 34

 3.2.2 Verification of the 1D model for masonry using the FEM 37

 3.3 Parameter Estimation Using Experimental Displacement Fields 39

 3.3.1 Theoretical background .. 39
TABLE OF CONTENTS (Cont’d)

3.3.2 Experimental setup and observation data for system identification 41
3.3.3 Numerical model for system identification 41
3.3.4 Identification results 43

3.4 Continuum Modeling of Masonry Infills 44
3.4.1 Calibration and verification of the truss model 47
3.4.2 Effect of opening size on the lateral stiffness of infilled frames 53
3.4.3 Motivation for evolutionary methods in smeared cracking 55

3.5 Summary 55

4 EVOLUTIONARY METHODS FOR SMEARED CRACKING 57

4.1 Smeared Crack Framework 58
4.2 Strain Softening and Fracture Energy 64
4.3 Adaptive FEM For Problems With Smeared Cracking 66
 4.3.1 Review of error estimation and adaptivity 66
 4.3.2 Error estimation for linear problems 67
 4.3.3 Modified superconvergent patch recovery 69
 4.3.4 Identification of patches 72
 4.3.5 Adaptivity 72
 4.3.6 Mesh enrichment 75
 4.3.7 Numerical results 77

4.4 Evolutionary Characteristic Length Method For Smeared Cracking 79
 4.4.1 Nonlocal apparent fracture energy and systematic evaluation of Λ 79
 4.4.2 Convergence property 82
 4.4.3 Simplified forms for the evolution equation 83
 4.4.4 Nonlocal forms and superconvergent patch recoveries 84
 4.4.5 Numerical implementation 85
 4.4.6 Mesh sensitivity study 85
TABLE OF CONTENTS (Cont’d)

4.4.7 Numerical applications 88

4.5 Summary .. 99

5 APPROXIMATE MODELS FOR SEISMIC FRAGILITY 101

5.1 Seismic Fragility ... 101
 5.1.1 Seismic hazard .. 102
 5.1.2 Limit states ... 103

5.2 The Dynamic Plastic Hinge Method 108

5.3 Description of The Investigated Structure 110

5.4 Validation of The Dynamic Plastic Hinge Method 113

5.5 Random Properties ... 115

5.6 Simulation Method ... 116

5.7 Results .. 118

5.8 Summary .. 120

6 CONCLUDING REMARKS .. 121

6.1 Summary and Conclusions 121

6.2 Suggestions for Future Research 122

7 REFERENCES ... 123

A Derivation of Equivalent Elastic Properties of Masonry ... 137

A.1 Vertical Direction .. 137

A.2 Horizontal direction .. 138

B Fracture Energy and Damage Mechanics 141

C Characteristics of LRC Frame 143