TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Objectives</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Organization of the Report</td>
<td>3</td>
</tr>
<tr>
<td>2 MODELING OF PILE FOOTINGS</td>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.2 Two-Step Seismic Design Process</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Step 1: Determination of Seismic Demand and Foundation Stiffness</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2.1.1 Displacement Demand</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2.1.2 Force Demand Associated with Load Fuses</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2.1.3. Governing Load Case for Foundation Design</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.2.1.4 Other Loading Mechanisms</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.2.1.5 Foundation Damping</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Step 2: Capacity Analysis</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Prevalent Practice for Conservatism</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.3 Single Pile-Head Stiffness</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.3.1 General Form</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Appropriate Foundation Stiffness Matrix</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.3.2.1 Fundamental Assumptions</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.3.2.2 Stiffness Matrix from Nonlinear Analysis</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Pile-Head Stiffness for Axial Load</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.3.3.1 Simplified Graphical Procedure</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.3.3.2 Stiffness for Uplift Loading</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.3.3.3 Selection of Secant Stiffness</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Pile-Head Stiffness for Lateral Loading</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.3.4.1 Linear Subgrade Modulus</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.3.4.2 Embedment Effect</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.3.4.3 Relationship Between Subgrade Modulus and Soil Modulus</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.3.4.4 Presumptive Lateral Stiffness</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Foundation Displacement/Rotation Criteria</td>
<td>35</td>
</tr>
<tr>
<td>2.4 Pile-Group Stiffness</td>
<td>2.4.1 Rigorous Method Using Static Equilibrium</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.4.1.1 Special Case of Plumb Pile Group</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Simplified Method Using an Equivalent-Cantilever Approach</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.4.2.1 Equivalent Cantilever Model Parameter for Lateral Loading</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.4.2.2 Cantilever Model Matched to Diagonal Stiffness</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.4.2.3 Cantilever Model Matched to Translational and Cross Coupling Stiffness</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>2.4.2.4 Axial and Torsional Stiffness</td>
<td>41</td>
</tr>
<tr>
<td>SECTION</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.5</td>
<td>Pilecap Stiffness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5.1 Previous Research on Interaction Between Pile and Pile Cap</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Recommendation for Incorporating Pile Cap Stiffness</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>2.5.3 Passive Earth Pressure for Sand</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>2.5.4 Passive Earth Pressure for General c-φ Soils</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>2.5.5 Typical Earth Pressure Coefficients for Design</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>2.5.6 Pile Cap Displacement</td>
<td>47</td>
</tr>
<tr>
<td>2.6</td>
<td>Nonlinear Load-Deflection Sensitivity Study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6.1 Background on p-y Curves</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.6.2 p-y Curves versus Terzaghi's Subgrade Modulus</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2.6.3 Sensitivity to Various Aspects of Soil-Pile Modeling Assumptions</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>2.6.4 Pile Group Effects for Typical Pile Footings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6.4.1 Group Effects from Elastic Halfspace Theory</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2.6.4.2 Group Effects from Experimental Studies</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2.6.5 Group Effects for Extremely Large Pile Groups</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>2.6.6 Pile Design in Liquefiable Soils</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6.6.1 Design for Structural Loading</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>2.6.6.2 Design Issues Related to Lateral Ground Spread</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>MODELING OF DRILLED SHAFTS</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Seismic Design Procedure For Drilled Shafts</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Step 1: Modeling of Foundation Stiffness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.1.1 Coupled Foundation Stiffness Matrix</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>3.2.1.2 Equivalent Cantilever Beam</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>3.2.1.3 Uncoupled Foundation Springs</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>3.2.1.4 Foundation Nonlinearity</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>3.2.1.5 Foundation Geometry</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>3.2.1.6 Boundary Conditions</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>3.2.1.7 Other Considerations</td>
<td>89</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Step 2: Estimating Foundation Capacity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2.1 Prevalent Practice for Conservatism</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>3.2.2.2 Formation of Plastic Hinge</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>3.2.2.3 Shear Capacity</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>3.2.2.4 Minimum Pile Length</td>
<td>92</td>
</tr>
<tr>
<td>3.3</td>
<td>p-y Model For Drilled Shafts</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>3.3.1 Effects of Various Parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3.1.1 Soil Properties</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>3.3.1.2 Degradation Effect</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>3.3.1.3 Embedment and Gapping or Scouring</td>
<td>99</td>
</tr>
<tr>
<td>SECTION</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Load Transfer Mechanism of Laterally Loaded Piles</td>
<td>103</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Installation Procedure</td>
<td>106</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Observation From Load Test Data</td>
<td>106</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Observations From Analytical Results</td>
<td>107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 SUMMARY AND CONCLUSIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Summary</td>
<td>109</td>
</tr>
<tr>
<td>4.2 Conclusions and Recommendations</td>
<td>109</td>
</tr>
</tbody>
</table>

| 5 REFERENCES | 113|

xiii