<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1.1.</td>
<td>Objectives</td>
<td>1</td>
</tr>
<tr>
<td>1.2.</td>
<td>Experimental Scope</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1.</td>
<td>Gravity Load Designed Frame</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2.</td>
<td>Unreinforced Masonry with Openings</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3.</td>
<td>Similitude Requirements</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4.</td>
<td>Input Ground Motion</td>
<td>7</td>
</tr>
<tr>
<td>1.3.</td>
<td>Behavior of Masonry Infilled Frames</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1.</td>
<td>Failure Modes</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2.</td>
<td>Previous Research</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>MATERIALS</td>
<td>15</td>
</tr>
<tr>
<td>2.1.</td>
<td>Mix Design</td>
<td>15</td>
</tr>
<tr>
<td>2.2.</td>
<td>Concrete and Steel Properties</td>
<td>15</td>
</tr>
<tr>
<td>2.3.</td>
<td>Masonry Testing</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>EXPERIMENTAL SET-UP</td>
<td>21</td>
</tr>
<tr>
<td>3.1.</td>
<td>Loading System</td>
<td>21</td>
</tr>
<tr>
<td>3.2.</td>
<td>Strain Gages</td>
<td>21</td>
</tr>
<tr>
<td>3.3.</td>
<td>Displacement Transducers</td>
<td>22</td>
</tr>
<tr>
<td>4.</td>
<td>SPECIMEN CHARACTERIZATION</td>
<td>25</td>
</tr>
<tr>
<td>4.1.</td>
<td>Bare Frame</td>
<td>25</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Free Vibration Testing</td>
<td>25</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Flexibility Testing</td>
<td>27</td>
</tr>
<tr>
<td>4.2.</td>
<td>Infilled Frame</td>
<td>29</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Free Vibration Testing</td>
<td>29</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Flexibility Testing</td>
<td>29</td>
</tr>
<tr>
<td>4.2.3.</td>
<td>Analytical Verification</td>
<td>31</td>
</tr>
<tr>
<td>4.3.</td>
<td>Damage and Repair</td>
<td>32</td>
</tr>
<tr>
<td>4.4.</td>
<td>Recharacterization</td>
<td>33</td>
</tr>
<tr>
<td>4.4.1.</td>
<td>Flexibility Testing</td>
<td>33</td>
</tr>
<tr>
<td>4.4.2.</td>
<td>Shear Building Model</td>
<td>33</td>
</tr>
<tr>
<td>4.4.3.</td>
<td>Stiffness Testing</td>
<td>35</td>
</tr>
<tr>
<td>4.4.4.</td>
<td>Hysteretic Energy Dissipation</td>
<td>37</td>
</tr>
<tr>
<td>5.</td>
<td>PSEUDODYNAMIC METHOD</td>
<td>39</td>
</tr>
<tr>
<td>5.1.</td>
<td>Conceptual Basis</td>
<td>39</td>
</tr>
<tr>
<td>5.2.</td>
<td>Development of Pseudodynamic Testing</td>
<td>40</td>
</tr>
<tr>
<td>5.3.</td>
<td>Mathematical Formulation</td>
<td>43</td>
</tr>
<tr>
<td>5.4.</td>
<td>Control Algorithm for Stiff Structures</td>
<td>43</td>
</tr>
<tr>
<td>5.4.1.</td>
<td>Dual Displacement Control</td>
<td>43</td>
</tr>
<tr>
<td>5.4.2.</td>
<td>"Soft Coupling" Formulation</td>
<td>45</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont'd)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3.</td>
<td>Determination of Q Matrix</td>
<td>49</td>
</tr>
<tr>
<td>6. PSEUDODYNAMIC IMPLEMENTATION</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>6.1.</td>
<td>Mass and Damping Properties</td>
<td>53</td>
</tr>
<tr>
<td>6.2.</td>
<td>Control Parameters</td>
<td>54</td>
</tr>
<tr>
<td>7. PSEUDODYNAMIC VERIFICATION</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>7.1.</td>
<td>Bilinear Modeling of a Low-Level Test</td>
<td>57</td>
</tr>
<tr>
<td>7.2.</td>
<td>Sources of Error</td>
<td>58</td>
</tr>
<tr>
<td>7.3.</td>
<td>Tolerance and Displacement Error</td>
<td>62</td>
</tr>
<tr>
<td>7.4.</td>
<td>Over- and Undershooting Errors</td>
<td>63</td>
</tr>
<tr>
<td>7.5.</td>
<td>Numerical Simulation of Displacement Error</td>
<td>64</td>
</tr>
<tr>
<td>8. PSEUDODYNAMIC RESULTS</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>8.1.</td>
<td>Testing Sequence</td>
<td>65</td>
</tr>
<tr>
<td>8.2.</td>
<td>Global Behavior</td>
<td>66</td>
</tr>
<tr>
<td>8.2.1.</td>
<td>Story Hysteretic Relations</td>
<td>67</td>
</tr>
<tr>
<td>8.2.2.</td>
<td>Energy Dissipation</td>
<td>75</td>
</tr>
<tr>
<td>8.2.3.</td>
<td>Frequency Spectra</td>
<td>80</td>
</tr>
<tr>
<td>8.3.</td>
<td>Masonry Crack Development</td>
<td>83</td>
</tr>
<tr>
<td>8.4.</td>
<td>Local Behavior Critical Event Series</td>
<td>88</td>
</tr>
<tr>
<td>8.5.</td>
<td>Infill-Frame Interaction</td>
<td>88</td>
</tr>
<tr>
<td>8.5.1.</td>
<td>Maximum Base Shear Series</td>
<td>88</td>
</tr>
<tr>
<td>8.5.2.</td>
<td>Maximum First Story Displacement Series</td>
<td>96</td>
</tr>
<tr>
<td>8.5.3.</td>
<td>Column Shear Cracking</td>
<td>96</td>
</tr>
<tr>
<td>8.6.</td>
<td>Infill Panel Behavior</td>
<td>101</td>
</tr>
<tr>
<td>8.6.1.</td>
<td>Strain Rosettes</td>
<td>101</td>
</tr>
<tr>
<td>8.6.2.</td>
<td>Panel DCDTs</td>
<td>102</td>
</tr>
<tr>
<td>8.7.</td>
<td>Strut Mechanisms</td>
<td>108</td>
</tr>
<tr>
<td>8.7.1.</td>
<td>Effective Strut Width and Stiffness</td>
<td>108</td>
</tr>
<tr>
<td>8.7.2.</td>
<td>Experimental Strut Forces</td>
<td>110</td>
</tr>
<tr>
<td>8.8.</td>
<td>Infill Shear Behavior</td>
<td>112</td>
</tr>
<tr>
<td>9. CONCLUSIONS</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>9.1.</td>
<td>Pseudodynamic Testing</td>
<td>117</td>
</tr>
<tr>
<td>9.2.</td>
<td>Experimental Behavior and Strut Mechanisms</td>
<td>118</td>
</tr>
<tr>
<td>9.3.</td>
<td>Recommendations for Future Research</td>
<td>119</td>
</tr>
<tr>
<td>9.4.</td>
<td>Recommendations for Analysis and Design</td>
<td>120</td>
</tr>
<tr>
<td>10. REFERENCES</td>
<td></td>
<td>123</td>
</tr>
</tbody>
</table>