Workshop Summary

Q & A
Force vs. Displacement Design

Describe both Force and Displacement design approaches using a simple force vs. displacement diagram.
Force-Based Design Approach

Lateral Force

F_{\text{elastic}}

Effect of R

Elastic Response
(no damage)

Ductile Response
(damage permitted)

Δ_{\text{y-system}} Δ_{\text{elastic}} Δ_{\text{ultimate}}

Displacement - Δ

F_{\text{elastic}} / R

Sixth National Seismic Conference on Bridges and Highways
Seismic Technologies for Extreme Loads
Displacement-Based Design Approach

- Elastic Response (no damage)
- SDC-C demand - Δ_D^L
- SDC-C capacity - Δ_C^L
- Ductile Response (damage permitted)

Note: Only SDC-C design case is shown in diagram.

Lateral Force

- $F_{\text{elastic SDC-C}}$
- R_d

Displacement - Δ

- Δ_{SDC-B}
- Δ_{SDC-C}
- Δ_{SDC-D}
- Δ_{ultimate}

Sixth National Seismic Conference on Bridges and Highways
Seismic Technologies for Extreme Loads
Displacement-Based Design Approach

Displacement - Δ

Lateral Force

$F_{\text{elastic SDC-C}}$

R_d

Elastic Response (no damage)

Zones 2-4 (LRFD)

Ductile Response (damage permitted)

$\Delta_{\text{SDC-B}}$, $\Delta_{\text{SDC-C}}$, $\Delta_{\text{SDC-D}}$, Δ_{ultimate}
Questions?