Summary

Presented by Ian Buckle
Civil and Environmental Engineering
University of Nevada Reno

Day 1:

- Philosophy and Process
 - Performance-based retrofit: upper and lower level earthquakes
 - Seismic Retrofit Categories
 - Screening, Evaluation and Retrofit (Strategies, Approaches and Measures)

- Category A and B bridges
 - Screening
 - Evaluation
 - Retrofit measures
 - Seats, bearings, superstructures
Days 2 and 3:

- **Category C and D bridges:**
 - Requirements
 - Screening
 - Evaluation
 - Structural modeling, demand & capacity assessment
 - Geotechnical modeling and capacity assessment
 - Substructure retrofit measures (columns, abutments, footings, and foundations)
 - Site remediation, hazardous sites

Collapse of Shi-wei bridge due to liquefaction, Chi-chi Earthquake, Taiwan, September 1999
Shear failure in pier of Wu-shi bridge, Chi-chi Earthquake, Taiwan, September 1999
Performance-based retrofit

- Explicit attempt to satisfy public expectations of bridge performance for earthquakes ranging from small to large... for example:

<table>
<thead>
<tr>
<th>Performance</th>
<th>Earthquake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
</tr>
<tr>
<td>No interruption</td>
<td>✓</td>
</tr>
<tr>
<td>Limited access</td>
<td></td>
</tr>
<tr>
<td>Closed for repairs</td>
<td></td>
</tr>
</tbody>
</table>

![Relative Effort vs Hazard Level Diagram](image)

- [Relative Effort vs Hazard Level Diagram](image)
Information required to determine *seismic retrofit category*

- Anticipated Service Life
- Performance Objectives
- Bridge Inventory
- Seismic Hazard
 - Ground motions
 - Site effects

Seismic retrofit category

Seismic Hazard Level (SHL)

- Bridge Importance
- Anticipated Service Life, ASL
- Spectral Accelerations, Ss and S1
- Soil Factors, Fa and Fv

Performance Level (PL)

Seismic Retrofit Category (SRC)
Seismic retrofit category

<table>
<thead>
<tr>
<th>HAZARD LEVEL</th>
<th>PERFORMANCE LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PL0: No min.</td>
</tr>
<tr>
<td></td>
<td>PL1: Life-safety</td>
</tr>
<tr>
<td></td>
<td>PL2: Operational</td>
</tr>
<tr>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>II</td>
<td>A</td>
</tr>
<tr>
<td>III</td>
<td>A</td>
</tr>
<tr>
<td>IV</td>
<td>A</td>
</tr>
</tbody>
</table>

Minimum requirements

<table>
<thead>
<tr>
<th>ACTION</th>
<th>SEISMIC RETROFIT CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Screening/Retrofitting</td>
<td>NR</td>
</tr>
</tbody>
</table>
Screening and prioritization

Purpose is to screen an existing inventory of bridges for seismic deficiencies and prioritize the inventory for seismic retrofitting based on vulnerability, hazard, and other factors.

Screening methods are expected to be quick and thus conservative; bridges that ‘fail’ are passed to a second level of screening i.e. ‘detailed evaluation’
Methods of evaluation

In general, all evaluation methods involve (figure 1-13):
- Demand analysis
- Capacity assessment
- Calculation of a capacity / demand ratio either
 - for each critical component in a bridge or
 - for bridge as a complete system

Exceptions exist

Methods of evaluation continued

Three categories, six methods:

I. No demand analysis
 1. Method A1/A2 (capacity checks made for seats and connections)
 2. Method B (capacity checks made for seats connections, columns, and footings)

II. Component C/D evaluation
 3. Method C (elastic analysis: uniform load method, multimode spectral analysis; prescriptive rules given for calculation of component capacity)
Methods of evaluation continued

III. Structure C/D evaluation

4. Method D1 (*capacity-spectrum method*: elastic analysis for demands, simplified models for calculation of capacity);

5. Method D2 (*pushover method*: elastic analysis for demands, nonlinear static analysis used for calculation of pier capacity);

6. Method E (nonlinear time history analysis for calculation of both demand and capacity)

Geotechnical modeling

- Geotechnical Modeling and Capacity Assessment
 - Foundation Modeling
 - Shallow footings
 - Piles and pile groups
 - Abutments
 - Ground Displacement Demands
 - Settlement
 - Liquefaction Induced Lateral Spreads
Retrofit strategies, approaches, and measures

Retrofit Measure: a device or technique such as a restrainer, column jacket, stone column.

Retrofit Approach: One or more measures used together to achieve an improvement in performance such as strengthening using restrainers and jackets...

Retrofit strategies, approaches and measures continued

Retrofit Strategy (one of the following):
- One or more approaches used together to achieve desired level of improvement in performance such as strengthening and site remediation.
- Partial or full replacement
- Do-nothing (retrofitting not justified)
Retrofit approaches

Approaches: one or more measures to achieve:
- Strengthening
- Displacement capacity enhancement
- Force limitation
- Response modification
- Site remediation
- Partial replacement
- Damage acceptance or control

Retrofit matrix

For a given seismic deficiency, matrix identifies possible *approaches,* and for each approach, matrix recommends possible *measures* for consideration
Retrofit matrix: approaches/measures

<table>
<thead>
<tr>
<th>Deficiency</th>
<th>Retrofit approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strengthening</td>
</tr>
<tr>
<td>Unstable footings</td>
<td>10.3.2 10.4.2</td>
</tr>
</tbody>
</table>

Retrofit measures

- **Superstructure measures:**
 - Restrainers
 - Seat width extensions, catcher blocks
 - Continuous simple spans
 - Bearing side-bar restraints, shear keys, stoppers
 - Isolation bearings and energy dissipators, including ductile-end-diaphragms
Retrofit measures continued

- **Substructure measures**
 - Column jacketing, using steel, fiber composites, or concrete shells
 - Infill walls
 - Column replacements

Retrofit measures for foundations and hazardous sites

- **Retrofit Measures for**
 - Abutments, Footings and Foundations
 - Hazardous sites including
 - near active faults
 - unstable slopes
 - liquefiable sites.
Thanks!

- Jerry O'Connor, MCEER
- Holly Winston, ODOT
- Peter Dusicka, PSU
- Geoff Martin, USC
- Rick Nutt, Consultant
- Jane Stoyle, MCEER

Thanks!

- Phil Yen, FHWA
- Glenn Smith, FHWA