Evaluation of Members, Connections, and Subsystems

Tim Ingham

Outline

- Member capacity
 - Axial
 - Flexural
 - Ductility

- Connection capacity
 - Riveted
 - Gusset plates
 - Net section

- Displacement capacity of subsystems

- Capacity demand analysis
Axial Capacity, per AASHTO

Tension

\[P_n = f_y A_g \]
\[P_n = f_u A_g U \]

Where

- \(f_y \) = yield strength of steel
- \(f_u \) = tensile strength of steel
- \(A_g \) = gross area of section
- \(A_n \) = net area of section
- \(U \) = reduction factor for shear lag

Compression

If \(\lambda \leq 2.25 \) then

\[P_n = 0.66 \frac{f_y A_g}{\lambda} \]

If \(\lambda > 2.25 \) then

\[P_n = \frac{0.88 f_y A_g}{\lambda} \]

Where

\[\lambda = \left(\frac{K l}{r^2} \right) \frac{f_y}{E} \]

Where

- \(K \) = the effective length factor
- \(l \) = the unbraced length of the member
- \(r \) = the radius of gyration
- \(E \) = the elastic modulus
Axial Capacity, Slender Cross-Section

A cross-section is slender if $\lambda > \lambda_r$ for one of its components. The component will buckle before reaching the yield strain of the material.

<table>
<thead>
<tr>
<th>Member</th>
<th>Ratio</th>
<th>λ_7</th>
<th>λ_9</th>
<th>λ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanges of I-shapes</td>
<td>$\frac{b}{t}$</td>
<td>$\frac{141}{\sqrt{F_y - 10}}$</td>
<td>$\frac{65}{\sqrt{F_y}}$</td>
<td>$\frac{52}{\sqrt{F_y}}$</td>
</tr>
<tr>
<td>Flanges of boxes</td>
<td>$\frac{b}{t}$</td>
<td>$\frac{238}{\sqrt{F_y - F_r}}$</td>
<td>$\frac{190}{\sqrt{F_y}}$</td>
<td>$\frac{110}{\sqrt{F_y}}$</td>
</tr>
</tbody>
</table>

Follow the procedure described in Appendix B of the Load and Resistance Factor Design Specification for Structural Steel Buildings
For Un-Stiffened Elements

\[Q_s = 1.415 - 0.00437 \frac{b}{t} \sqrt{f_y} \quad \text{if} \quad \frac{95.0}{f_y} < \frac{b}{t} < \frac{176}{f_y} \]

\[Q_s = \frac{20000}{f_y \left(\frac{b}{t}\right)^2} \quad \text{if} \quad \frac{176}{f_y} \leq \frac{b}{t} \]

where
- \(b \) = the width of the leg
- \(t \) = the thickness of the leg

For Stiffened Elements

\[Q_s(f) = \frac{b_e(f)}{b} = \frac{326}{b} \left(1 - \frac{64.9}{b \sqrt{f}} \right) \]

with
- \(b_e(f) \) = the effective width
- \(b \) = the actual width
- \(f \) = the stress in the element
Axial Capacity, Slender Cross-Section

\[Q_a(f) = \frac{\sum b_t(f)t}{\sum b_t} \]

\[Q = Q_a Q \]

The nominal compression capacity is

If \(Q\lambda \leq 2.25 \) then \(P_n = Q 0.66^{Q\lambda} f_y A_g \)

If \(Q\lambda > 2.25 \) then \(P_n = \frac{0.88 f_y A_g}{\lambda} \)

the first equation requires an iterative solution

\[f_{cr} = Q(f_{cr}) 0.66^{Q(f_{cr})\lambda} f_y \]

Example: Slender Cross-Section

[Diagram of slender cross-section]
Splices in Built-Up Members

- Gross section capacity
- Net section capacity
 - Of splice plates
 - Of member
 - Could occur through intermediate plates
- Load transfer capacity, through rivets or bolts
- If member ductility demands exceed unity, then splices should be 25% stronger than the member
Laced Members

- Not treated in modern codes

- Tensile capacity
 - Use usual methodology
 - Don't count the laces in gross area

- Compressive capacity
 - Use usual methodology
 - Member stability
 - Section stability, based on width-to-thickness ratios
 - With a modification
 - Consider also the stability of the member between the points of attachment of the laces
Compressive Capacity of Laced Members

For \(\frac{KL}{r} > 40 \), \(K' = K \sqrt{1 + \frac{300}{(KL/r)^2}} \)

For \(\frac{KL}{r} \leq 40 \), \(K' = 1.1K \)

where

- \(K \) = the effective length factor
- \(l \) = the unbraced length of the member
- \(r \) = the radius of gyration

Proportions of Laced Members

\[\frac{a}{r_{\text{min}}} \leq \min \left\{ 40, \frac{2KL}{3r} \right\} \]

Per the AASHTO Standard Specifications, the slenderness of longitudinal elements must satisfy
Ill-Proportioned Laced Member

- Must consider interaction of local and global buckling

\[
\frac{a}{r_{\text{min}}} > \min \{40, \frac{2KL}{r}\}
\]
Actual Member

With Partial Lacing

No convergence beyond this point
Shear Strength of Laced Members

For a single plane of single lacing

\[V_1 = \frac{T}{\sqrt{L^2 + T^2}} P_n\left(\sqrt{L^2 + T^2}\right) \]

where

\(P_n(l) \) is the compressive capacity of a lacing bar and implicitly considers the bar’s properties.

Check for external shears plus 2% of compressive capacity.

For a single plane of double lacing

\[V_1 = \frac{2T}{\sqrt{L^2 + T^2}} P_n\left(0.7\sqrt{L^2 + T^2}\right) \]

where

\(P_n(l) \) is the compressive capacity of a lacing bar and implicitly considers the bar’s properties.

The 0.7 factor accounts for the stabilizing effect of one lace on the other.
Flexural Capacity

For compact cross-section, with $\lambda < \lambda_p$

$$M_p = Z f_y$$

For a non-compact cross-section, with $\lambda_p \leq \lambda \leq \lambda_r$

$$M_n = M_p - \left(M_p - M_r \left(\frac{\lambda - \lambda_p}{\lambda_r - \lambda_p} \right) \right)$$

where λ is based on the controlling element, and where

$M_r = S f_y$

where

Z = the plastic modulus

S = the section modulus

Rivet hole creates a net section in the angle

The components of the cross-sections of built-up and laced members that are subjected to tensile stress should satisfy net section requirements if the members are to reliably develop the plastic moment. Otherwise, use the elastic capacity.
Compactness Levels

<table>
<thead>
<tr>
<th>Width-to-Thick. Ratio</th>
<th>Term</th>
<th>Ductility</th>
</tr>
</thead>
<tbody>
<tr>
<td>> λ_r</td>
<td>Slender</td>
<td>None; local buckling occurs before yield</td>
</tr>
<tr>
<td>$\leq \lambda_r$</td>
<td>Non-compact</td>
<td>Little; yields before local buckling, but section won’t reach the plastic moment</td>
</tr>
<tr>
<td>$\leq \lambda_p$</td>
<td>Compact</td>
<td>Modest; section will achieve a rotational ductility of 4</td>
</tr>
<tr>
<td>$\leq \lambda_a$</td>
<td>Ductile</td>
<td>Significant; section will achieve a rotational ductility of about 8 to 10</td>
</tr>
</tbody>
</table>

Damage Levels

- **No damage**
 - Loads don’t exceed the nominal capacity, per code

- **Minimal damage**
 - Essentially elastic performance, characterized by
 - Minor inelastic response
 - No apparent permanent deformations
 - Inconsequential yielding of secondary members
Damage Levels

- **Repairable damage**
 - Can be repaired with a minimum risk of losing functionality, i.e., without closing the bridge, characterized by
 - Yield of members, although replacement should not be necessary
 - Small permanent offsets, not interfering with functionality

- **Significant damage**
 - Minimal risk of collapse, but may require closure to repair, characterized by
 - Yield of members, possibly requiring replacement
 - Permanent offset of the structure

Flexural Ductility – Definitions

\[R = \frac{\theta_h}{\theta_p} \]

where
\[\theta_h = \text{the rotation capacity} \]
\[\theta_p = \text{the plastic rotation, from} \]
\[\theta_p = \frac{M_p}{M_y} \theta_y \]

where
\[M_p = \text{the plastic moment} \]
\[M_y = \text{the yield moment, and} \ \theta_y, \text{the yield rotation is} \]
Flexural Ductility – Definitions

\[\theta_y = \frac{M_p}{E I} \]

where

- \(E \) = the elastic modulus
- \(I \) = the moment of inertia
- \(L_p \) = the plastic hinge length, say, 10% of the distance from the point of maximum moment to the point of contraflexure.

Flexural Ductility – New Members

<table>
<thead>
<tr>
<th>Damage Level</th>
<th>(\lambda \leq \lambda_s)</th>
<th>(\lambda \leq \lambda_p)</th>
<th>(\lambda \leq \lambda_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Repairable</td>
<td>4</td>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td>Minimal</td>
<td>2</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Assumes that the axial force \(P < 0.5 A_g F_y \)

For \(0.5 A_g F_y < P < 1.0 A_g F_y \) linearly interpolate between tabulated values and 1.0
Flexural Ductility – Laced Members

- Based on only a few tests of the cyclic behavior of laced members
- May also be based on finite element analysis
- Not to exceed values for new members, based on width-to-thickness ratios
- Reduce capacity with axial force by the same rule as for new members
- Check shear on laces
- Check net section of components

<table>
<thead>
<tr>
<th>Damage Level</th>
<th>Ductility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant</td>
<td>2</td>
</tr>
<tr>
<td>Repairable</td>
<td>1.6</td>
</tr>
<tr>
<td>Minimal</td>
<td>1.3</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
</tr>
</tbody>
</table>

Flexural Ductility – Laced Member Tests

- Tested specimens with various b/t and Kt/r ratios
Flexural Ductility – Laced Member Tests

- Uang, C.M. & Kleiser, M., “Cyclic Performance of Latticed Members for San Francisco-Oakland Bay Bridge,” Report No. SSRP-97/01, Division of Structural Engineering, University of California at San Diego
- Tested members for seismic retrofit of the SFOBB

- Tested members for seismic retrofit of the SFOBB
Flexural Ductility – Perforated Members

- Based on one test of the cyclic behavior of perforated members
- May also be based on inelastic finite element analysis
- Not to exceed the values for new members, based on width-to-thickness ratios
- Reduce capacity with axial force by the same rule as for new members
- Check net section of components

<table>
<thead>
<tr>
<th>Damage Level</th>
<th>Ductility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant</td>
<td>3</td>
</tr>
<tr>
<td>Repairable</td>
<td>2.1</td>
</tr>
<tr>
<td>Minimal</td>
<td>1.4</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
</tr>
</tbody>
</table>

Flexural Ductility – Perf. Member Tests

- Tested members for seismic retrofit of the SFOBB
Axial Ductility – New Members

- Values assume a compact section, i.e., $\lambda \leq \lambda_p$
- Values for significant damage are based on Dowrick, “Earthquake Resistant Design,” 2nd edition, John Wiley & Sons
- Values are for X or Z-braces / V or K-braces

\[
\text{Member} \frac{KI}{r} \sqrt{\frac{f_y}{36 \text{ ksi}}}
\]

<table>
<thead>
<tr>
<th>Damage Level</th>
<th>< 40</th>
<th>< 80</th>
<th>< 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant</td>
<td>4.5 / 3.0</td>
<td>3.5 / 1.8</td>
<td>2.4 / 1.2</td>
</tr>
<tr>
<td>Repairable</td>
<td>2.7 / 2.1</td>
<td>2.3 / 1.5</td>
<td>1.8 / 1.1</td>
</tr>
<tr>
<td>Minimal</td>
<td>1.7 / 1.4</td>
<td>1.5 / 1.2</td>
<td>1.3 / 1.1</td>
</tr>
<tr>
<td>No</td>
<td>1.0 / 1.0</td>
<td>1.0 / 1.0</td>
<td>1.0 / 1.0</td>
</tr>
</tbody>
</table>

Axial Ductility – Laced and Perf. Members

- Based on
 - Lee, K., & Bruneau, M.
 - Uang, C.M. & Kleiser, M.
 - Dietrich, A. & Itani, A.
- Not to exceed the values for new members based on controlling slenderness ratio of the member

<table>
<thead>
<tr>
<th>Damage Level</th>
<th>Laced</th>
<th>Perforated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Repairable</td>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Minimal</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Riveted Connections

\[\phi \cdot R_n = \phi \cdot F_r \cdot mA_r \]

where
\[\phi = 0.80 \]
\[F_r = \text{the ultimate strength of the rivet in single shear} \]
\[m = \text{the number of shear planes} \]
\[A = \text{the nominal area of the rivet} \]

- Could also use the yield strength of rivets for higher performance and less damage
- Check bearing strength per the AASHTO LRFD

Bolted and Welded Connections

- **Bolted Connections**
 - Design per the AASHTO LRFD
 - If member ductility demands exceed unity, then connections should be 25% stronger than the members they connect

- **Welded Connections**
 - Design per the AASHTO LRFD
 - If member ductility demands exceed unity, then connections should be 25% stronger than the members they connect
 - Partial penetration welds
 - Don’t use in regions subjected to inelastic deformation
 - Elsewhere, provide 150% of the required strength, but not less than 75% of the member strength
Gusset Plates

- Shall be designed to F_y for combined force and moment
- Use Thornton’s methodology to calculate forces and moments
- Shall be designed to $F_u/\sqrt{3}$ for uniform shear and to $0.74 \times F_u/\sqrt{3}$ for flexural shear
- Buckling shall be investigated using a truss analogy; with $K=0.65$
Gusset Plates

Unsupported edges should satisfy

\[\frac{l}{t} \leq 1.6 \sqrt{\frac{E}{f_y}} \]

where

- \(l \) = the unsupported length of the edge
- \(t \) = the thickness of the gusset plate

Otherwise, add a stiffener.
Gusset Plates

- Added stiffeners should satisfy

\[
I_s \geq \max\left(9.2, 1.83 \sqrt{\frac{(b/t)^2}{2} - 144}\right) t^4
\]

where

- \(I_s \) = the moment of inertia of the stiffener (about its own axis)
- \(b \) = the tributary width of gusset plate (1/2 the edge length)
- \(t \) = the thickness of the gusset plate

Gusset Plates

- Should be 25% stronger than the members they connect, if member ductility demands exceed unity
Fracture of the Net Section

\[\frac{A_e}{A_g} \geq \frac{1.2 \alpha D}{A_g f_u} \]

where
- \(A_e \) = the effective net area
- \(A_g \) = the gross area of the member
- \(f_u \) = the minimum tensile strength of the member
- \(\alpha \) = the fraction of member force transferred across the net section
- \(D = \min(A_g f_y, F_{eq}, F_{max}) \)
- \(f_y \) = the yield strength of the member
- \(F_{eq} \) = the elastic seismic force, and \(F_{max} \) = the maximum force possible

Displacement Capacity of Systems

- **Portal Frames**
- **Sway Frames**
- **Support Towers**
Sway Frame

Support Towers
Pushover Analysis

Modeling Requirements

- **Column**
 - Plastic hinging element (with yield moment dependent on axial force)
 - Include axial forces acting on columns

- **Braces**
 - Phenomenological model
 - Physical model
 - Finite element model
 - Utilizes plastic hinging elements
 - Requires geometrically nonlinear analysis
Phenomenological Model

Ikeda, Mahin, & Dermitzakis

Physical Model

Ikeda & Mahin
Finite Element Model

Plastic-hinging element

Beam element

Force-Displacement Response

"Failure" of first plastic hinge

Formation of plastic hinge in leg or bucking of brace
Force-Displacement Response

Member Versus System Ductility
Pushover Analysis

- A concentrated load at the top of the structure
- A uniform load
- A uniform acceleration, or mass proportional load
- A concentrated displacement at the top of the structure
- A displacement pattern derived from the displaced shape corresponding to the peak drift of the
- A displacement pattern equal to one or more relevant mode shapes

Capacity/Demand Analysis

\[
\frac{C}{D} = \frac{\text{Member or System Capacity}}{\text{Member or System Demand}}
\]
Force Capacity/Demand Analysis

\[
\frac{C}{D_T} = \frac{T}{D} = \frac{\text{Tensile Strength}}{\text{Calculated Demand}}
\]

\[
\frac{C}{D_C} = \frac{C}{D} = \frac{\text{Compressive Strength}}{\text{Calculated Demand}}
\]

\[
\frac{C}{D_S} = \frac{S}{D} = \frac{\text{Connection and/or Splice Strength}}{\text{Calculated Demand}}
\]

\[
\frac{C}{D_N} = \frac{N}{D} = \frac{\text{Net Section Strength}}{\text{Calculated Demand}}
\]

Displacement Capacity/Demand Analysis

\[
\frac{C}{D} = \frac{\text{Member Deformation Ductility Capacity}}{\text{Member Deformation Ductility Demand}}
\]

\[
\frac{C}{D} = \frac{\text{Subsystem Displacement Capacity}}{\text{Subsystem Displacement Demand}}
\]
Threshold Values of C/D Ratio

<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Member Type</th>
<th>Main, Non-Red.</th>
<th>Main, Redundant</th>
<th>Sec., Bracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yielding</td>
<td></td>
<td>1.0</td>
<td>0.8</td>
<td>0.67</td>
</tr>
<tr>
<td>Fracture</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Buckling</td>
<td></td>
<td>1.0</td>
<td>0.8</td>
<td>0.67</td>
</tr>
<tr>
<td>Conn. or Splice</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Force Capacity/Demand < 1 ?

- **If only slightly less**
 - A minor amount of yielding is probably acceptable
 - Capacity calculation is likely to be conservative
 - These ideas are reflected in the threshold values

- **If significantly less**
 - Inelastic analysis warranted
 - Get ductility demands of the member
 - Evaluate force redistribution to other members
Case 1: $C/D_T < 1$

- The tensile capacity is less than the demand
 - Inelastic response is implied
 - Fracture of the net section should be avoided
 - Connections and splices should be 25% stronger than the member

- Retrofit it may not be required if the ratio is above the threshold value, i.e., if $C/D_T > \gamma_T$

Case 2: $C/D_T < \gamma_T$

- The tensile capacity is less than the (threshold) demand

- Retrofit should be pursued to increase the tensile strength of the member

- Reevaluate strengthened member
 - Net section
 - Splices and connections
Case 3: \(\frac{C}{D_C} < \gamma_C \) and \(\gamma_T < \frac{C}{D_T} \)

- The compressive capacity is less than the (threshold) demand
- The tensile capacity exceeds the (threshold) demand
- Retrofit should be pursued to increase the compressive strength of the member
- Reevaluate strengthened member
 - Net section
 - Splices and connections

Case 4: \(\gamma_C < \frac{C}{D_C} \) and \(\gamma_T < \frac{C}{D_T} \)

- The compressive capacity exceeds the (threshold) demand
- The tensile capacity exceeds the (threshold) demand
- Evaluate connections and splices
Case 4a: $C/D_S < \gamma_S$

- The connection or splice capacity is less than the (threshold) demand
- Strengthen connection

Case 4b: $\gamma_S < C/D_S$

- The connection or splice capacity exceeds the (threshold) demand
- No retrofit is required, if the tensile capacity exceeds the demand, i.e., $1 < C/D_T$
- Otherwise ($C/D_T < 1$), the member response is inelastic
 - Case 1 applies
 - Connections and splices should be 25% stronger than the member
Interaction of Axial Force and Flexure

AASHTO LRFD interaction equations

\[
\frac{P_u}{2.0P_r} + \left(\frac{M_{rx}}{M_{rx}} + \frac{M_{ry}}{M_{ry}} \right) \leq 1.0 \text{ if } \frac{P_u}{P_r} < 0.2
\]

\[
\frac{P_u}{P_r} + \frac{8}{9} \left(\frac{M_{rx}}{M_{rx}} + \frac{M_{ry}}{M_{ry}} \right) \leq 1.0 \text{ if } \frac{P_u}{P_r} \geq 0.2
\]

AASHTO Inverted

\[
2 \left(\frac{P_r}{P_u} \right) \left(\frac{M_{rx}M_{ry}}{M_{rx}M_{ry} + M_{ux}M_{ux} + M_{uy}M_{uy}} \right) \geq 1.0 \text{ if } \frac{P_r}{P_u} > 5
\]

\[
2 \left(\frac{P_r}{P_u} \right) + \left(\frac{M_{rx}M_{ry}}{M_{rx}M_{ry} + M_{ux}M_{ux} + M_{uy}M_{uy}} \right) \geq 1.0 \text{ if } \frac{P_r}{P_u} \leq 5
\]
Capacity Demand Ratio

\[
\frac{C}{D} = \begin{cases}
2 \left(\frac{P_r}{P_u} \right) \left(\frac{M_{rz} M_{ry}}{M_{ux} M_{ry} + M_{uy} M_{rx}} \right) & \text{if } \frac{P_r}{P_u} > 5 \\
2 \left(\frac{P_r}{P_u} \right) + \left(\frac{M_{rz} M_{ry}}{M_{ux} M_{ry} + M_{uy} M_{rx}} \right) & \text{if } \frac{P_r}{P_u} \leq 5
\end{cases}
\]