Location: In the proximity of the train station of the city of L’Aquila, Piazzale Caduti 8 Dicembre 1943.

Description: Three buildings with significant damage were identified in the proximity of the train station of the city.

Fig. 1 Location of the three buildings identified with seismically induced damage

Building #1: A two-story building made of non-ductile reinforced concrete, bricks and masonry has been destroyed and has partially collapsed. The first floor features wide openings employed for commercial use.

Fig. 2 West side view of the building. The south part is still standing but has been heavily damaged, while the north part has collapsed.
Fig. 3 Close-up view of the west side of the south part of the building. Diagonal cracking is observed across the corners of the successive windows along the mid-height of the second floor, splitting the concrete columns, as well. The first floor does not appear to suffer from significant damage.

Fig. 4 Close-up view of the west side of the north part of the building, which has totally collapsed.
Fig. 5 View of the east side of the building. Reinforcement in concrete elements appears to be minimal; no longitudinal or transverse reinforcement bars are readily identified in the failed parts of the building.

Fig. 6 Close-up view of the east side of the north part of the building, which has totally collapsed.
Fig. 7 Close-up view of the north side of the building. The roof slab appears to be constructed of two thin layers of concrete and bricks. No reinforcement is evident in this photo as well.
Building #2: A two-story building constructed similarly to building 1 (probably non-ductile reinforced concrete, bricks and masonry) has been heavily damaged to an extent that will be probably demolished. The building suffers from evident diagonal cracks that extend along all the exterior walls of both floors. The cracks cross the columns as well.

Fig. 8 Two photos of the east side of the building. Heavy damage is readily identified, classifying the structure as a collapse hazard.
Building #3: Heavy damage was observed in a two-story masonry residential house. The middle part of the structure that featured two floors – opposed to the adjacent parts that featured a single floor – has sustained most of the damage. The exterior wall of the second floor has failed out of plane and could expose a collapse hazard in subsequent aftershocks.

Fig. 9 North-east view of the north side of the building. Fallen debris is identified on the pavement outside the house.
Fig. 10 General north-east (top) and north-west (bottom) views of the north side of the building. Some cracks can be identified in the adjacent one-story structures, yet no significant damage is evident in these parts of the building.
Fig. 11 Close-up view of the failed part of the exterior wall at the second floor.