TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 General .. 1
1.2 Motivation ... 2
1.3 Scope of Work ... 3
1.4 Report Organization .. 4

CHAPTER 2 LITERATURE REVIEW ... 5

2.1 Introduction ... 5
2.2 Historical Developments ... 5
 2.2.1 Introduction .. 5
 2.2.2 France ... 6
 2.2.3 South Africa.. 9
 2.2.4 Italy ... 9
 2.2.5 United Kingdom ... 10
 2.2.6 New Zealand .. 11
 2.2.7 Japan ... 11
 2.2.8 United States ... 12
2.3 Standardized Designs of Seismically Isolated Nuclear Reactors .. 15
 2.3.1 Advanced Liquid Metal Reactor .. 15
 2.3.2 Super-Power Reactor Inherently Safe Module (S-PRISM).. 16
 2.3.3 Sodium Advanced Fast Reactor ... 17
 2.3.4 Secure Transportable Autonomous Reactor ... 18
 2.3.5 DFBR .. 20
 2.3.6 Super Safe, Small and Simple (4S) .. 22
 2.3.7 Jules Horowitz Reactor (RJH) .. 24
 2.3.8 International Thermonuclear Experimental Reactor (ITER) .. 26
 2.3.9 International Reactor Innovative and Secure (IRIS) .. 28
2.4 Review of Experimental Work .. 30
 2.4.1 General ... 30
 2.4.2 Iwabe et al. (2000) .. 32
 2.4.3 Kato et al. (2003) ... 33
 2.4.4 Shoji et al. (2004) ... 34
 2.4.5 Feng et al. (2004) ... 34
 2.4.6 Warn (2006).. 35
 2.4.7 Constantinou et al. (2007) .. 36
2.5 Review of Mathematical Models .. 36
 2.5.1 Hyperelastic models ... 36
 2.5.2 Linear and nonlinear stiffness models .. 40
2.6 Modeling in Contemporary Software Programs .. 45
 2.6.1 General ... 45
 2.6.2 SAP2000... 46
 2.6.3 3D-BASIS ... 47
TABLE OF CONTENTS (CONT’D)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.4 PERFORM-3D</td>
<td>48</td>
</tr>
<tr>
<td>2.6.5 ABAQUS, LS-DYNA, and ANSYS</td>
<td>51</td>
</tr>
<tr>
<td>2.6.6 OpenSees</td>
<td>56</td>
</tr>
<tr>
<td>2.6.7 Summary</td>
<td>57</td>
</tr>
<tr>
<td>CHAPTER 3 MATHEMATICAL MODELS OF ELASTOMERIC BEARINGS</td>
<td>59</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>3.2 Mechanical Behavior in Vertical Direction</td>
<td>59</td>
</tr>
<tr>
<td>3.2.1 General</td>
<td>59</td>
</tr>
<tr>
<td>3.2.2 Coupling of horizontal and vertical response</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3 Buckling in compression</td>
<td>62</td>
</tr>
<tr>
<td>3.2.4 Cavitation in tension</td>
<td>65</td>
</tr>
<tr>
<td>3.2.5 Post-cavitation behavior</td>
<td>66</td>
</tr>
<tr>
<td>3.2.6 Strength degradation in cyclic loading</td>
<td>70</td>
</tr>
<tr>
<td>3.2.7 Mathematical model</td>
<td>71</td>
</tr>
<tr>
<td>3.3 Mechanical Behavior in the Horizontal Direction</td>
<td>72</td>
</tr>
<tr>
<td>3.3.1 General</td>
<td>72</td>
</tr>
<tr>
<td>3.3.2 Coupled horizontal response</td>
<td>73</td>
</tr>
<tr>
<td>3.3.3 Heating of the lead core</td>
<td>74</td>
</tr>
<tr>
<td>3.3.4 Equivalent damping</td>
<td>76</td>
</tr>
<tr>
<td>3.3.5 Variation in shear modulus</td>
<td>78</td>
</tr>
<tr>
<td>3.3.6 Mathematical model</td>
<td>79</td>
</tr>
<tr>
<td>3.4 Mechanical Behavior in Rotation and Torsion</td>
<td>83</td>
</tr>
<tr>
<td>CHAPTER 4 IMPLEMENTATION OF THE MATHEMATICAL MODELS IN OPENSEES AND ABAQUS</td>
<td>85</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>4.2 Physical Model</td>
<td>85</td>
</tr>
<tr>
<td>4.2.1 Reference coordinate systems</td>
<td>88</td>
</tr>
<tr>
<td>4.3 Numerical Model and Code Implementation</td>
<td>95</td>
</tr>
<tr>
<td>4.3.1 General</td>
<td>95</td>
</tr>
<tr>
<td>4.3.2 Material models</td>
<td>96</td>
</tr>
<tr>
<td>4.3.3 Nonlinear geometric effects</td>
<td>109</td>
</tr>
<tr>
<td>4.4 Implementation in OpenSees</td>
<td>112</td>
</tr>
<tr>
<td>4.4.1 General</td>
<td>112</td>
</tr>
<tr>
<td>4.4.2 OpenSees framework</td>
<td>112</td>
</tr>
<tr>
<td>4.4.3 Variables and functions in OpenSees elements</td>
<td>115</td>
</tr>
<tr>
<td>4.4.4 User elements</td>
<td>115</td>
</tr>
<tr>
<td>4.5 Implementation in ABAQUS</td>
<td>120</td>
</tr>
<tr>
<td>4.5.1 General</td>
<td>120</td>
</tr>
<tr>
<td>4.5.2 ABAQUS framework</td>
<td>121</td>
</tr>
<tr>
<td>4.5.3 Variables in ABAQUS subroutines</td>
<td>125</td>
</tr>
<tr>
<td>4.5.4 User input interface of the elements</td>
<td>128</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT’D)

4.5.5 User elements ... 129

CHAPTER 5 VERIFICATION AND VALIDATION ... 133

5.1 Introduction ... 133
5.2 Background ... 134
5.3 Elastomeric Bearing Model Development .. 139
 5.3.1 General ... 139
 5.3.2 Model development .. 140
5.4 Verification and Validation Criteria .. 142
5.5 Verification of the Model .. 143
 5.5.1 Verification model .. 144
 5.5.2 Code verification .. 145
 5.5.3 Solution verification ... 162
 5.5.4 Conclusions on verification .. 186
5.6 Validation of the Model .. 187
 5.6.1 General ... 187
 5.6.2 Sensitivity analysis ... 188
 5.6.3 Available test data .. 192
 5.6.4 Validation plan ... 196
5.7 Accuracy Criteria .. 199

CHAPTER 6 SPECIMEN SELECTION AND EXPERIMENTAL PROGRAM 201

6.1 Introduction ... 201
6.2 Model Bearing Properties ... 201
 6.2.1 Target and reported properties, and predicted capacities ... 201
6.3 Test Program ... 214
 6.3.1 General ... 214
 6.3.2 Description ... 214
6.4 Instrumentation and Data Acquisition ... 224
 6.4.1 General ... 224
 6.4.2 Single Bearing Testing Machine .. 224
 6.4.3 Five channel load cell ... 228
 6.4.4 Potentiometers .. 228
 6.4.5 Krypton tracking system ... 229
 6.4.6 Video monitoring system ... 231
 6.4.7 Concrete strength tester .. 233

CHAPTER 7 EXPERIMENTAL RESULTS ... 235

7.1 Introduction ... 235
7.2 Data Processing ... 235
 7.2.1 General ... 235
 7.2.2 Filtering ... 235
TABLE OF CONTENTS (CONT’D)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.3 Axial displacement</td>
<td>237</td>
</tr>
<tr>
<td>7.2.4 Actuator comparison</td>
<td>242</td>
</tr>
<tr>
<td>7.3 Characterization Testing</td>
<td>245</td>
</tr>
<tr>
<td>7.3.1 General</td>
<td>245</td>
</tr>
<tr>
<td>7.3.2 Shear properties</td>
<td>245</td>
</tr>
<tr>
<td>7.3.3 Compression properties</td>
<td>255</td>
</tr>
<tr>
<td>7.3.4 Tensile properties</td>
<td>259</td>
</tr>
<tr>
<td>7.4 Effect of Lateral Offset on Tensile Properties</td>
<td>262</td>
</tr>
<tr>
<td>7.5 Effect of Tensile Loading History on Cavitation</td>
<td>266</td>
</tr>
<tr>
<td>7.6 Effect of Cavitation on Mechanical Properties</td>
<td>269</td>
</tr>
<tr>
<td>7.6.1 General</td>
<td>269</td>
</tr>
<tr>
<td>7.6.2 Shear properties</td>
<td>269</td>
</tr>
<tr>
<td>7.6.3 Axial properties</td>
<td>274</td>
</tr>
<tr>
<td>7.6.4 Critical buckling load capacity</td>
<td>275</td>
</tr>
<tr>
<td>7.7 Failure mode in tension</td>
<td>279</td>
</tr>
<tr>
<td>7.8 Validation of Mathematical Model</td>
<td>280</td>
</tr>
<tr>
<td>7.9 Conclusions and Recommendations</td>
<td>283</td>
</tr>
<tr>
<td>CHAPTER 8 RESPONSE OF THE TWO-NODE MACRO MODEL OF</td>
<td>285</td>
</tr>
<tr>
<td>BASE-ISOLATED NUCLEAR POWER PLANT</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>285</td>
</tr>
<tr>
<td>8.2 Numerical Model</td>
<td>285</td>
</tr>
<tr>
<td>8.3 Results of Analysis using the Simplified Isolator Model</td>
<td>290</td>
</tr>
<tr>
<td>8.4 Results of Analysis using the Advanced Isolator Model</td>
<td>295</td>
</tr>
<tr>
<td>8.4.1 Strength degradation in shear due to heating of the lead core</td>
<td>295</td>
</tr>
<tr>
<td>8.4.2 Variation in buckling load due to horizontal displacement</td>
<td>300</td>
</tr>
<tr>
<td>8.4.3 Cavitation and post-cavitation behavior</td>
<td>303</td>
</tr>
<tr>
<td>8.4.4 Variation in axial stiffness due to horizontal displacement</td>
<td>303</td>
</tr>
<tr>
<td>8.4.5 Variation in shear stiffness due to axial load</td>
<td>306</td>
</tr>
<tr>
<td>8.4.6 Cumulative effects</td>
<td>307</td>
</tr>
<tr>
<td>8.5 Summary and Conclusions</td>
<td>314</td>
</tr>
<tr>
<td>CHAPTER 9 RESPONSE OF THE LUMPED-MASS STICK MODEL OF</td>
<td>317</td>
</tr>
<tr>
<td>BASE-ISOLATED NUCLEAR POWER PLANT</td>
<td></td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>317</td>
</tr>
<tr>
<td>9.2 Fixed-base Model of a Nuclear Power Plant</td>
<td>317</td>
</tr>
<tr>
<td>9.2.1 Modal analysis</td>
<td>319</td>
</tr>
<tr>
<td>9.3 Base-isolated Model of the Nuclear Power Plant</td>
<td>323</td>
</tr>
<tr>
<td>9.4 Response-history Analysis</td>
<td>326</td>
</tr>
<tr>
<td>9.5 Results of Analysis using the Simplified Isolator Model</td>
<td>328</td>
</tr>
<tr>
<td>9.6 Results of Analysis using the Advanced Isolator Model</td>
<td>331</td>
</tr>
<tr>
<td>9.7 Comparison with Macro-model Analysis</td>
<td>336</td>
</tr>
<tr>
<td>9.8 Vertical Accelerations in the Superstructure</td>
<td>338</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT’D)

9.8.1 Modal properties ... 341
9.8.2 Damping ... 342
9.8.3 Substructuring ... 350
9.9 Conclusions ... 363

CHAPTER 10 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 365

10.1 Summary ... 365
10.2 Conclusions ... 367
10.3 Recommendations for Future Research .. 369

CHAPTER 11 REFERENCES ... 371

APPENDIX A EXPERIMENTAL PROGRAM AND RESULTS .. 383

A.1 Experimental Program ... 383
A.2 Original Load Cell Design Sheet (source: nees.buffalo.edu) .. 394
A.3 Strong Potentiometer Data Sheet (source: www.celesco.com) .. 395
A.4 Linear Potentiometer Data Sheet (source: www.etisystems.com) 396
A.5 Effect on tensile behavior of a central hole in a bearing .. 397
A.6 Failure Mode in Tension ... 402

APPENDIX B RESPONSE OF THE TWO-NODE MACRO MODEL OF BASE-ISOLATED NUCLEAR POWER PLANT ... 409

B.1 Strength Degradation in Shear due to Heating of the Lead Core 409

APPENDIX C RESPONSE OF THE LUMPED-MASS STICK MODEL OF BASE-ISOLATED NUCLEAR POWER PLANT ... 411

C.1 Model of Nuclear Power Plant ... 411
C.2 Geometric and Material Properties of the Stick Model .. 414
C.3 Modal Analysis of Lumped-Mass Stick Model ... 420
C.4 Simplified Calculation of Modal Frequencies .. 423
C.5 Responses of the Base-isolated Nuclear Power Plant ... 425
C.6 Basemat Response .. 437
C.7 Superstructure Response ... 439
C.8 Floor Response Spectra .. 442
 C.8.1 Simplified isolator model ... 442
 C.8.2 Advanced isolator model ... 446
LIST OF FIGURES

Figure 1.1: Seismically isolated nuclear power plant ... 3

Figure 2.1: Cut-away view of seismic isolator used for the Cruas NPP; dimensions in mm
(Labbe, 2010) .. 7

Figure 2.2: Vertical cross section through the isolator and pedestal in the Cruas NPP
(Labbe, 2010) .. 7

Figure 2.3: Four units of seismically isolated NPP at Cruas, France
(Forni and Poggianti, 2011) ... 8

Figure 2.4: Historical development of PRISM .. 14

Figure 2.5: ALMR reactor & steam generator facility general arrangement
(Forni, 2010) .. 16

Figure 2.6: Cut-away view of the PRISM reactor (GE, 2012) ... 17

Figure 2.7: Vertical cross section through the seismically isolated STAR
(Yoo and Kulak, 2002) .. 19

Figure 2.8: 3D isolation system for the STAR (Yoo et al., 1999) .. 20

Figure 2.9: Vertical layout of seismically isolated demonstration FBR (Forni, 2010) 21

Figure 2.10: 2D isolation system for the demonstration FBR (Forni, 2010) 21

Figure 2.11: 3D isolation system for the demonstration FBR (Forni, 2010) 22

Figure 2.12: Vertical cross section through the seismically isolated 4S reactor, dimensions
in mm (Shimizu, 2009) .. 23

Figure 2.13: Layout of lead-rubber bearings in the 4S reactor (Shimizu, 2009) 24

Figure 2.14: Cut-away view of Jules Horowitz Reactor (NUVIA, 2011) 25

Figure 2.15: Elastomeric bearing used for the RJH (NUVIA, 2011) ... 25

Figure 2.16: Layout of the isolators for the RJH (NUVIA, 2011) .. 26

Figure 2.17: Isolator layout for the seismically isolated ITER (www.iter.org) 27

Figure 2.18: Cross-section through the elastomeric bearing used for ITER and RJH
(NUVIA, 2011) .. 27

Figure 2.19: Isolators installed on the site of ITER (http://www.iter.org) 28

Figure 2.20: Vertical section through IRIS (Forni and Poggianti, 2011) 29

Figure 2.21: Layout of isolators for IRIS (Poggianti, 2011) .. 29

Figure 2.22: Variation of cavitation stress with the thickness of rubber discs of different
Young’s modulus (Gent and Lindley, 1959a) ... 31

Figure 2.23: Hysteresis in tension loading with 200 % shear strain (Iwabe et al., 2000) 33

Figure 2.24: Effect of offset shear strain on tensile behavior (Kato et al., 2003) 34
LIST OF FIGURES (CONT’D)

Figure 2.25: Lateral force versus lateral displacement under tensile and compressive loading (Shoji et al., 2004) .. 35
Figure 2.26: Load-deformation behavior of LDR bearings under tensile loading with zero lateral offset (Warn, 2006) .. 35
Figure 2.27: Load-displacement behavior in tension (Constantinou et al., 2007) 36
Figure 2.28: Components of energy dissipation in the tensile loading of elastomeric bearings .. 40
Figure 2.29: Linear stiffness model of elastomeric bearing in vertical direction 41
Figure 2.30: Vertical stiffness model for an elastomeric bearing (Constantinou et al., 2007) 44
Figure 2.31: Axial stress-strain model (Yamamoto et al., 2009) .. 45
Figure 2.32: Three of the six independent springs in a Link/Support element 46
Figure 2.33: Link/Support property data input to SAP2000 (CSI, 2011) 47
Figure 2.34: Model that can be analyzed in 3D-BASIS-ME-MB (Tsopelas et al., 2005) 49
Figure 2.35: Degrees of freedom in 3D-BASIS-ME-MB (Tsopelas et al., 2005) 50
Figure 2.36: Finite element model of a low damping rubber bearing 51
Figure 2.37: Properties definition of rubber material in ABAQUS ... 52
Figure 2.38: Conceptual illustration of connector behaviors (Dassault, 2010d) 54
Figure 2.39: Type of connectors used for seismic isolators .. 55
Figure 2.40: Definition of connector's behavior .. 55
Figure 2.41: OpenSees isolator model ... 56
Figure 3.1: Model of an elastomeric bearing (Constantinou et al., 2007) 60
Figure 3.2: Stress softening under compression ... 61
Figure 3.3: Reduced area of elastomeric bearings (adapted from Constantinou et al. (2007)) ... 64
Figure 3.4: Bilinear variation of buckling load ... 65
Figure 3.5: Post-cavitation variation of tensile force in the bearing 69
Figure 3.6: Load-deformation behavior of rubber bearings under tension 71
Figure 3.7: Mathematical model of elastomeric bearings in axial direction 72
Figure 3.8: Mathematical model of elastomeric bearings in shear 73
Figure 3.9: Schematic of a LR bearing (Kalpakidis et al., 2010) .. 75
Figure 3.10: Idealized behavior of elastomeric bearings in shear (Warn and Whittaker, 2006) .. 77
Figure 3.11: Effective stiffness of elastomeric bearings (Constantinou et al., 2007) 78
Figure 3.12: Stress and strain dependency of LDR bearings (courtesy of DIS Inc.) 79
Figure 3.13: Mathematical model of lead rubber bearings in horizontal direction 80
LIST OF FIGURES (CONT’D)

Figure 3.14: Alternative representation of the mathematical model ... 80
Figure 4.1: Physical model of an elastomeric bearing .. 87
Figure 4.2: Discrete spring representation of an elastomeric bearing .. 87
Figure 4.3: Coordinate systems used in OpenSees and ABAQUS ... 90
Figure 4.4: Three of the six basic deformations in the 1-2 plane (adapted from CSI (2007)) 90
Figure 4.5: Orientation of local and global coordinate axis systems .. 92
Figure 4.6: Components of the numerical model of elastomeric bearing ... 100
Figure 4.7: Overturning loads due to translation of story weights (Wilson, 2002) 110
Figure 4.8: High-level OpenSees objects in the software framework (Mazzoni et al. (2006)) 113
Figure 4.9: The components of the Domain object (Mazzoni et al., 2006) 114
Figure 4.10: The components of the Analysis object (Mazzoni et al., 2006) 114
Figure 4.11: Internal construction of an elastomeric bearing ... 118
Figure 4.12: Local and global coordinates used in OpenSees for the elements 119
Figure 4.13: Outline of a general analysis step in ABAQUS (adapted from Dassault (2012)) 123
Figure 4.14: Programming structure of user elements (adapted from Dassault (2012)) 123
Figure 5.1: Model development, verification and validation (Thacker et al., 2004) 132
Figure 5.2: Hierarchy of the model for an elastomeric bearing ... 137
Figure 5.3: Verification, validation and model calibration plan for elastomeric bearings 139
Figure 5.4: Two-node macro model of a base-isolated NPP ... 142
Figure 5.5: Analyses cases used for the symmetry test ... 144
Figure 5.6: Force-displacement response in shear at the free node .. 146
Figure 5.7: Shear strength degradation due to heating of the lead core (large size bearing in Kalpakidis et al. (2010)) ... 149
Figure 5.8: Shear force history (large size bearing in Kalpakidis et al. (2010)) 149
Figure 5.9: Cavitation and post-cavitation behavior (LDR5 in Warn (2006)) 150
Figure 5.10: Cavitation and post-cavitation behavior (KN2 in Iwabe et al. (2000)) 150
Figure 5.11: Axial behavior under increasing amplitude triangular loading and linearly increasing lateral loading ($\Delta t = 0.01$ sec, LDR5 in Warn (2006)) 151
Figure 5.12: Axial behavior under increasing amplitude triangular loading and linearly increasing lateral loading ($\Delta t = 0.005$ sec, LDR5 in Warn (2006)) 151
Figure 5.13: Order of accuracy test (Oberkampf and Roy, 2011) ... 153
Figure 5.14: Observed order of accuracy at a crossover point (Oberkampf and Roy, 2010) 158
LIST OF FIGURES (CONT’D)

Figure 5.15: Order of accuracy in the vertical direction \(a_g = g \sin(\pi t) \) .. 160

Figure 5.16: Order of accuracy in the horizontal direction \(a_g = 0.001 g \sin(\pi t) \) 160

Figure 5.17: Order of accuracy in horizontal direction \(a_g = 0.1 g \sin(\pi t) \) for LDR and \(a_g = 0.5 g \sin(\pi t) \) for LR bearing) ... 160

Figure 5.18: Observed order of accuracy of the heating model... 161

Figure 5.19: Discretization error in the shear displacement .. 169

Figure 5.20: Discretization error in the temperature rise of the lead core 169

Figure 5.21: Horizontal shear response of a LDR bearing ... 170

Figure 5.22: Force-displacement loops for a LR bearing ... 170

Figure 5.23: Temperature increase in the lead core... 171

Figure 5.24: Discretization error in shear displacement ... 172

Figure 5.25: Free vibration response of a LDR bearing in the horizontal direction
\((u_o = 0.01 \, \text{mm}, \zeta = 2\%) \) .. 174

Figure 5.26: Free vibration response of a LDR bearing in the vertical direction
\((u_o = 0.01 \, \text{mm}, \zeta = 2\%) \) .. 174

Figure 5.27: Bending moments in a two node element ... 175

Figure 5.28: Integrators in OpenSees.. 176

Figure 5.29: Shear displacement response of a LDR bearing \((\Delta t/T_n = 0.1) \) 179

Figure 5.30: Shear displacement response of a LDR bearing \((\Delta t/T_n = 0.01) \) 180

Figure 5.31: Variation of numerical damping with time-discretization \((T_n = 2 \, \text{sec}) \) 180

Figure 5.32: Shear displacement response obtained using Central Difference integrator 182

Figure 5.33: Shear displacement obtained using Newmark Linear Acceleration integrator ... 182

Figure 5.34: Effect of Newmark parameter, \(\gamma \), on the shear displacement history of a LDR
bearing \(((\Delta t = 0.1 \, \text{sec}, T_n = 2 \, \text{sec}) \) ... 184

Figure 5.35: Effect of Newmark parameter, \(\gamma \), on the shear displacement history of a LDR
bearing \((\beta = 0.25, \Delta t = 0.01 \, \text{sec}, T_n = 2 \, \text{sec}) \) ... 184

Figure 5.36: Effect of Newmark parameter, \(\beta \), on the shear displacement history of a LDR
bearing \((\gamma = 0.5, \Delta t = 0.1 \, \text{sec}, T_n = 2 \, \text{sec}) \) ... 185

Figure 5.37: Effect of Newmark parameter, \(\beta \), on the shear displacement history of a LDR
bearing \((\gamma = 0.5, \Delta t = 0.01 \, \text{sec}, T_n = 2 \, \text{sec}) \) ... 185

Figure 5.38: Effect of various parameters on axial behavior of a LDR bearing 189

Figure 5.39: Effect of the strength degradation parameter on the tensile behavior 190
LIST OF FIGURES (CONT’D)

Figure 5.40: Effect of different parameters on yield strength of a LDR bearing................. 191
Figure 5.41: Effect of parameters on the shear behavior (LR5 bearing in Warn (2006)) 191
Figure 5.42: Effect of parameters on the shear behavior (large size LR bearing of Kalpakidis et al. (2010)) ... 192
Figure 5.43: Calibration of the mathematical model in tension with test data 192
Figure 5.44: Calibration of the mathematical model in tension with test data of Clark (1996) . 193
Figure 5.45: Shear force-displacement behavior of a LR bearing under harmonic loading 194
Figure 5.46: Shear force history of a LR bearing under harmonic loading 194
Figure 5.47: Shear force-displacement behavior of a LR bearing under random loading 195
Figure 5.48: Shear force history of a LR bearing under random loading 195
Figure 6.1: Geometric details of bearing type A ... 206
Figure 6.2: Geometric details of bearing type B ... 207
Figure 6.3: DIS bearing type A, DA (courtesy of DIS, Inc.) ... 208
Figure 6.4: DIS bearing type B, DB (courtesy of DIS, Inc.) ... 209
Figure 6.5: Mageba bearing type A, MA (courtesy of Mageba) ... 210
Figure 6.6: Mageba bearing type B, MB (courtesy of Mageba) .. 211
Figure 6.7: Signals used for the experiments ... 223
Figure 6.8: Schematic of Single Bearing Testing Machine (Warn, 2006) 225
Figure 6.9: Layout of experimental setup (top-view) ... 225
Figure 6.10: Photograph of Single Bearing Testing Machine ... 226
Figure 6.11: Capacity nomogram for load cell cross-section (SEESL, 2010) 227
Figure 6.12: Five channel load cell .. 228
Figure 6.13: String potentiometer used for the measurement of axial displacement 229
Figure 6.14: Components of the Krypton tracking system ... 230
Figure 6.15: Locations monitored by the Krypton camera during testing 231
Figure 6.16: Cameras used for the video monitoring system ... 232
Figure 6.17: Location of the four cameras on the columns of the SBTM 232
Figure 6.18: Compression Strength Tester at SEESL, University at Buffalo 233
Figure 6.19: Potentiometers ... 234
Figure 7.1: Effect of cutoff frequency on the shear response (bearing DA3, test 1) 236
Figure 7.2: Effect of cutoff frequency on the tensile response (bearing DA3, test 6) 237
LIST OF FIGURES (CONT’D)

Figure 7.3: Top view of the instrumentation setup of SBTM ... 238
Figure 7.4: Locations of LEDs for Krypton tracking system ... 238
Figure 7.5: Axial deformation obtained using string potentiometers (bearing DA3, test 2) 240
Figure 7.6: Axial deformation obtained using string potentiometers (bearing MA3, test 3) 240
Figure 7.7: Axial deformation obtained using potentiometers and Krypton camera (bearing DA3, test 2) .. 241
Figure 7.8: Axial deformation obtained using potentiometers and Krypton camera (bearing DA3, test 3) .. 241
Figure 7.9: Shear force obtained using the MTS actuator and five channel load cell (bearing DB4, test 4a) .. 243
Figure 7.10: Shear force-displacement response obtained using the MTS actuator and the five channel load cell (bearing DB4, test 4a) .. 243
Figure 7.11: Shear displacement obtained using the MTS actuator and the Krypton camera (bearing DB4, test 4a) .. 244
Figure 7.12: Shear force-displacement loops obtained using the MTS actuator and the Krypton camera (bearing DB4, test 4a) .. 244
Figure 7.13: Idealized force-displacement behavior of an elastomeric bearing in shear (Warn and Whittaker, 2006) .. 246
Figure 7.14: A general hysteretic system (Chopra, 2007) ... 247
Figure 7.15: Statistical distributions of shear moduli ... 251
Figure 7.16: Statistical distributions of damping ratios .. 251
Figure 7.17: Variation of effective shear modulus of MA1 with frequency and strain 252
Figure 7.18: Variation of shear modulus of DIS bearings with shear strain 253
Figure 7.19: Variation of effective shear modulus of Mageba bearings with shear strain 253
Figure 7.20: Variation of effective shear modulus of DIS bearings with axial pressure 254
Figure 7.21: Variation of effective shear modulus of Mageba bearings with axial pressure 254
Figure 7.22: Compression characterization tests of bearings ... 256
Figure 7.23: Load-deformation behavior in cyclic tensile loading at different lateral offsets 263
Figure 7.24: Variation of tensile stiffness with lateral offset strain ... 263
Figure 7.25: Variation of tensile stiffness with number of cycles for bearing DA1 264
Figure 7.26: Variation of tensile stiffness with number of cycles for bearing DB4 (Δ / R = 0) 264
Figure 7.27: Effect of lateral offset on tensile hysteresis ... 265
LIST OF FIGURES (CONT’D)

Figure 7.28: Behavior of DIS bearings under cyclic tensile loading .. 267
Figure 7.29: Behavior of Mageba bearings under cyclic tensile loading 267
Figure 7.30: Behavior of DIS and Mageba bearings under cyclic tensile loading 268
Figure 7.31: Behavior of the trial bearing under cyclic tensile loading 268
Figure 7.32: Variation of effective shear modulus with shear strain for bearing DB4 271
Figure 7.33: Variation of effective shear modulus with axial pressure for bearing DA4 271
Figure 7.34: Variation of effective shear modulus with axial pressure for bearing DB4 272
Figure 7.35: Variation of effective shear modulus with axial pressure for bearing MB1 272
Figure 7.36: Slippage across the damaged interface of bearing MA4 in a shear test (axial pressure = 0.5 MPa) ... 273
Figure 7.37: Shear response of bearing MA4 at different axial loads ... 274
Figure 7.38: Compression failure tests of DA bearings .. 277
Figure 7.39: Compression failure tests of DB bearings .. 277
Figure 7.40: Compression failure tests of MA bearings .. 278
Figure 7.41: Compression failure tests of MB bearings .. 278
Figure 7.42: Failure mechanism in rubber bearings under tension .. 280
Figure 7.43: Misaligned grooves in top and bottom bearing plates of the bearing MA4 280
Figure 7.44: Validation of the mathematical model in tension, normalized force versus displacement .. 282
Figure 8.1. Two-node macro model of a base-isolated NPP .. 286
Figure 8.2. Acceleration response spectra of ground motions ... 289
Figure 8.3: Simplified model of LR bearing .. 290
Figure 8.4. Percentiles of horizontal displacement for LR bearing models 296
Figure 8.5. Percentiles of horizontal shear force for LR bearing models 297
Figure 8.6. Ratio of minimum characteristic shear strength to initial strength 298
Figure 8.7. Maximum temperature rise in the lead core ... 299
Figure 8.8. Histories of temperature increase in the lead cores ... 299
Figure 8.9: Normalized axial load ratios ... 301
Figure 8.10: Demand-capacity ratios for the constant buckling load model, P_{cr0} 301
Figure 8.11: Demand-capacity ratios for the displacement-dependent buckling load model, P_{cr} .. 302
LIST OF FIGURES (CONT’D)

Figure 8.12. Axial response of bearing LR5 in Warn (2006) subject to harmonic vertical excitation .. 304

Figure 8.13. Influence of axial stiffness model on the vertical response of T3Q6 ... 305

Figure 8.14. Effect of the variation of axial compressive stiffness on T3Q6 ... 306

Figure 8.15. Response of T2Q6 to ground motion 1 at 167% DBE ... 307

Figure 8.16. Ratios of percentiles of peak horizontal displacement to the median DBE displacement; simplified and advanced models .. 308

Figure 8.17. Ratios of the percentiles of peak horizontal displacement calculated using the advanced model to the median DBE displacement calculated using the simplified model .. 308

Figure 9.1: Stick model of the nuclear power plant (EPRI, 2007) ... 318

Figure 9.2: Orientation of the coordinate axes ... 319

Figure 9.3: Orientation of local axes in OpenSees ... 320

Figure 9.4: Stick model of a base-isolated NPP in OpenSees ... 323

Figure 9.5: Plan view of the layout of isolated basemat showing (node, bearing) pairs .. 324

Figure 9.6: Acceleration response spectra of ground motions ... 327

Figure 9.7. Ratios of percentiles of peak horizontal displacement to the median DBE displacement; simplified and advanced models .. 335

Figure 9.8. Ratios of the percentiles of peak horizontal displacement calculated using the advanced model to the median DBE displacement calculated using the simplified model .. 335

Figure 9.9: Ratios of the percentiles of peak horizontal displacement calculated using the stick model to the two-node macro model; simplified model .. 337

Figure 9.10: Ratios of the percentiles of peak horizontal displacement calculated using the stick model to the two-node macro model; advanced model .. 337

Figure 9.11: Mean peak zero-period accelerations (g) for 30 ground motion sets in the superstructure along the height for the model T2Q6; 100% DBE shaking .. 339

Figure 9.12: Acceleration histories at node 2137 of model T2Q6 subject to GM1; 100% DBE shaking .. 340

Figure 9.13: Acceleration response spectra at node 2137 of model T2Q6 subject to GM1; 100% DBE shaking .. 341

Figure 9.14: Power spectral density of vertical acceleration for model T2Q6 subject to GM1; 100% DBE shaking .. 342

Figure 9.15: Variation of modal damping ratios with frequency .. 343
LIST OF FIGURES (CONT’D)

Figure 9.16: Mean peak zero-period accelerations (g) for 30 ground motion sets in the superstructure along the height of the base-isolated NPP model T2Q6; 100% DBE shaking.. 348

Figure 9.17: Mean floor response spectra for 30 ground motion sets at the center of the isolated basemat (node 2137) for three damping models and corresponding modal damping ratios in the superstructure; T2Q6, 100% DBE shaking............ 349

Figure 9.18: Acceleration histories at node 417 of model T2Q6 subject to GM1; 100% DBE shaking .. 353

Figure 9.19: Acceleration histories at node 310 of model T2Q6 subject to GM1; 100% DBE shaking .. 355

Figure 9.20: Acceleration histories at node 538 of model T2Q6 subject to GM1; 100% DBE shaking .. 357

Figure A.1: Tension in a single constrained rubber layer ... 397

Figure A.2: Shear strain and tensile stress in a constrained solid rubber layer in tension 399

Figure A.3: Shear strain and tensile stress in a constrained annular rubber layer in tension 400

Figure A.4: Distribution of shear strain in the radial direction ... 401

Figure C.1: The plan view of the representative reactor model (Roche-Rivera, 2013) 412

Figure C.2: The plan view of the representative reactor model ... 413

Figure C.3: A two-dimensional representation of base-isolated NPP .. 423

Figure C.4: Spatial profile for mean of peak axial displacements (mm) for sets of 30 ground motion sets, 200% DBE ... 438

Figure C.5: Mean peak zero-period accelerations (g) for the 30 ground motion sets, T2Q6 440

Figure C.6: Mean peak zero-period accelerations (g) for the 30 ground motion sets, T2Q12 ... 441

Figure C.7: Floor response spectra, simplified model, node 2137, X direction 443

Figure C.8: Floor response spectra, simplified model, node 2137, Y direction 444

Figure C.9: Floor response spectra, simplified model, node 2137, Z direction 445

Figure C.10: Floor response spectra, advanced model, node 2137, X direction 447

Figure C.11: Floor response spectra, advanced model, node 2137, Y direction 448

Figure C.12: Floor response spectra, advanced model, node 2137, Z direction 449
LIST OF TABLES

Table 2.1: Properties of the lead-rubber bearings used for the 4S reactor (Shimizu, 2009).............. 22
Table 2.2: Experimental work on the tensile properties of elastomeric bearings................................. 32
Table 2.3: Hyperelastic models used in ABAQUS (Dassault, 2010g).. 38
Table 2.4: Modeling of elastomeric seismic isolators and software programs................................. 58
Table 3.1: Typical value of lead and steel related parameters (Kalpakidis et al., 2010)..................... 76
Table 4.1: Direction cosines of axes (adapted from Cook (2001))... 92
Table 4.2: Array indices.. 96
Table 4.3: Axial force and stiffness as a function of displacement ... 99
Table 4.4: Functions used in an OpenSees Element... 116
Table 4.5: Description of the user input arguments for the elements... 117
Table 4.6: Default values of optional parameters... 120
Table 4.7: Overview of variables used in ABAQUS user subroutines... 126
Table 4.8: Analysis cases used in ABAQUS ... 128
Table 4.9: Parameter definitions used for UEL interface... 129
Table 4.10: Properties of UELs that need to be defined as PROPS array 130
Table 5.1: Description of model input parameters (Oberkampf and Roy, 2011)............................... 138
Table 5.2: Scope of the V&V for the elastomeric bearing models... 140
Table 5.3: Phenomenon ranking and identification table for models of elastomeric bearings........... 141
Table 5.4: Geometrical and mechanical properties of elastomeric bearings 145
Table 5.5: Code-to-code verification for different component of the mathematical models.............. 148
Table 5.6: Discretization errors for numerical model in the axial direction..................................... 168
Table 5.7: Discretization errors for numerical model in the shear direction..................................... 168
Table 5.8: Damping ratios (%) calculated from numerical response .. 173
Table 5.9: Bending moments at the two nodes of the element (N-m).. 175
Table 5.10: Stability requirements for the response obtained using different integrators.................. 177
Table 5.11: Numerical damping in shear displacement response of a LDR bearing using different Newmark parameters (%)... 183
Table 5.12: Properties of the bearings used for experimental comparison.. 193
Table 5.13: Error associated with computational model ... 196
Table 5.14: Response quantities to be measured during the experiments...................................... 197
Table 6.1: Target model bearing properties.. 203
LIST OF TABLES (CONT’D)

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>DIS model bearing properties</td>
<td>204</td>
</tr>
<tr>
<td>6.3</td>
<td>Mageba model bearing properties</td>
<td>205</td>
</tr>
<tr>
<td>6.4</td>
<td>Geometrical and mechanical properties of elastomeric bearings (SI units)</td>
<td>215</td>
</tr>
<tr>
<td>6.5</td>
<td>Geometrical and mechanical properties of elastomeric bearings (US units)</td>
<td>216</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary of single bearing testing program</td>
<td>219</td>
</tr>
<tr>
<td>6.7</td>
<td>Trial bearing test sequence (SI units)</td>
<td>222</td>
</tr>
<tr>
<td>6.8</td>
<td>Single bearing testing machine actuator capabilities</td>
<td>227</td>
</tr>
<tr>
<td>6.9</td>
<td>Details of the camera used for video monitoring system</td>
<td>231</td>
</tr>
<tr>
<td>7.1</td>
<td>Summary of shear properties obtained from shear characterization tests</td>
<td>248</td>
</tr>
<tr>
<td>7.2</td>
<td>Averaged shear properties of bearings</td>
<td>250</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary of averaged shear properties</td>
<td>250</td>
</tr>
<tr>
<td>7.4</td>
<td>Effect of frequency on effective shear modulus</td>
<td>252</td>
</tr>
<tr>
<td>7.5</td>
<td>Compression properties obtained from characterization tests</td>
<td>257</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary of averaged compression properties of bearings</td>
<td>258</td>
</tr>
<tr>
<td>7.7</td>
<td>Theoretical and experimentally obtained compressive stiffness</td>
<td>259</td>
</tr>
<tr>
<td>7.8</td>
<td>Summary of tensile properties obtained from tensile tests</td>
<td>259</td>
</tr>
<tr>
<td>7.9</td>
<td>Average tensile properties of bearings</td>
<td>260</td>
</tr>
<tr>
<td>7.10</td>
<td>Compressive and tensile stiffness of bearings</td>
<td>260</td>
</tr>
<tr>
<td>7.11</td>
<td>Experimental and theoretical cavitation strengths</td>
<td>261</td>
</tr>
<tr>
<td>7.12</td>
<td>Location of rupture plane in bearings failed due to cavitation</td>
<td>269</td>
</tr>
<tr>
<td>7.13</td>
<td>Pre- and post-cavitation shear properties of elastomeric bearings</td>
<td>270</td>
</tr>
<tr>
<td>7.14</td>
<td>Coefficient of kinetic friction between rubber layers</td>
<td>274</td>
</tr>
<tr>
<td>7.15</td>
<td>Pre- and post-cavitation axial properties of elastomeric bearings</td>
<td>275</td>
</tr>
<tr>
<td>7.16</td>
<td>Theoretical and experimental values of critical buckling load</td>
<td>279</td>
</tr>
<tr>
<td>8.1</td>
<td>Geometrical and mechanical properties of elastomeric bearings</td>
<td>286</td>
</tr>
<tr>
<td>8.2</td>
<td>Geometric and material properties of LR bearing models</td>
<td>287</td>
</tr>
<tr>
<td>8.3</td>
<td>Rayleigh damping ratios in the six directions of motion of the isolation system</td>
<td>289</td>
</tr>
<tr>
<td>8.4</td>
<td>Percentiles of peak horizontal displacement (mm) for 30 ground motion sets; simplified model1</td>
<td>292</td>
</tr>
<tr>
<td>8.5</td>
<td>Percentiles of peak horizontal shearing force (%W) for 30 ground motion sets; simplified model1,2</td>
<td>292</td>
</tr>
</tbody>
</table>
Table 8.6: Percentiles of peak compressive displacement (mm) for 30 ground motion sets; simplified model

Table 8.7: Percentiles of peak compressive force (%W) for 30 ground motion sets; simplified model

Table 8.8: Percentiles of peak tensile displacement (mm) for 30 ground motion sets; simplified model

Table 8.9: Percentiles of peak tensile force (%W) for 30 ground motion sets; simplified model

Table 8.10: Number of ground motions (of 30) triggering buckling failures; using P_{crb}

Table 8.11: Number of ground motions (of 30) triggering buckling failures; using P_{cr}

Table 8.12: Number of ground motions (of 30) that cavitate isolators

Table 8.13: Number of ground motion sets (of 30) for which cavitation is predicted; advanced model

Table 8.14: Number of ground motion sets (of 30) for which buckling is predicted; advanced model

Table 8.15: Percentiles of peak horizontal displacement (mm) for 30 ground motion sets; advanced model

Table 8.16: Percentiles of peak shearing force; advanced model (%W) for thirty ground motion sets; advanced model

Table 8.17: Percentiles of peak compressive force (%W) for 30 ground motion sets; advanced model

Table 8.18: Mean peak tensile force (%F_c); of 30 ground motion sets; advanced model

Table 9.1: Modal properties of the stick models in OpenSees

Table 9.2: Modal properties of Auxiliary Shield Building (ASB)

Table 9.3: Modal properties of Steel Containment Vessel (SCV)

Table 9.4: Modal properties of Containment Internal Structure (CIS)

Table 9.5: Geometrical and mechanical properties of elastomeric bearings

Table 9.6: Geometric and material properties of LR bearing isolation system models

Table 9.7: Mean peak displacements (mm) for the 30 ground motion sets at the center and four corners of the basemat (model T2Q6); simplified model

Table 9.8: Mean peak rotations (degrees) for the 30 ground motion sets; simplified model

Table 9.9: Mean peak zero-period accelerations (g) for the 30 ground motion sets at center of basemat (node 2137); simplified model
Table 9.10: Mean peak spectral accelerations (g) for the 30 ground motion sets at center of basemat (node 2137); simplified model ... 330
Table 9.11: Mean peak displacements (mm) for 30 ground motion sets at the center and four corners of the basemat (model T2Q6); advanced model 332
Table 9.12: Mean peak rotations (degrees) for 30 ground motion sets; advanced model 332
Table 9.13: Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of the basemat (node 2137); advanced model ... 332
Table 9.14: Mean peak spectral accelerations (g) for 30 ground motion sets at center of basemat (node 2137); advanced model ... 332
Table 9.15. Median number of bearings (of 273) for 30 ground motion sets for which buckling is predicted; advanced model ... 333
Table 9.16. Median number of bearings (of 273) for 30 ground motion sets for which cavitation is predicted; advanced model ... 333
Table 9.17: Mean peak ground acceleration (g) for 30 ground motion sets 338
Table 9.18: Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of the basemat; base-isolated NPP .. 338
Table 9.19: Damping ratios corresponding to isolation frequency 345
Table 9.20: Damping ratios corresponding to the frequencies of the ASB 345
Table 9.21: Damping ratios corresponding to the frequencies of the SCV 345
Table 9.22: Damping ratios corresponding to the frequencies of the CIS 345
Table 9.23: Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of the basemat (node 2137); Rayleigh damping 346
Table 9.24: Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of the basemat (node 2137); mass proportional damping 346
Table 9.25: Mean peak zero-period accelerations (g) for 30 ground motion sets at the center of the basemat (node 2137); stiffness proportional damping 346
Table 9.26: Percentiles of peak horizontal displacement (mm) for 30 ground motion sets at the center of the basemat (node 2137); Rayleigh damping 347
Table 9.27: Percentiles of peak horizontal displacement (mm) for 30 ground motion sets at the center of the basemat (node 2137); mass proportional damping 347
Table 9.28: Percentiles of peak horizontal displacement (mm) for 30 ground motion sets at the center of the basemat (node 2137); stiffness proportional damping 347
Table 9.29: Rayleigh damping in the horizontal and vertical modes of the fixed-base superstructures in OpenSees .. 350
Table 9.30: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417; lumped-mass stick model ... 352
Table 9.31: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417; equivalent fixed-base model in OpenSees (EFB_OpenSees) 352

Table 9.32: Percentage reduction in means of peak zero-period accelerations (g) for 30 ground motion sets at node 417 obtained using the lumped-mass stick model and the equivalent fixed-base model in OpenSees (EFB_OpenSees) 352

Table 9.33: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310; lumped-mass stick model .. 354

Table 9.34: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310; equivalent fixed-base model in OpenSees (EFB_OpenSees) 354

Table 9.35: Percentage reduction in means of peak zero-period accelerations (g) for 30 ground motion sets at node 310 obtained using the lumped-mass stick model and the equivalent fixed-base model in OpenSees (EFB_OpenSees) 354

Table 9.36: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538; lumped-mass stick model .. 356

Table 9.37: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538; equivalent fixed-base model in OpenSees (EFB_OpenSees) 356

Table 9.38: Percentage reduction in means of peak zero-period accelerations (g) for 30 ground motion sets at node 538 obtained using the lumped-mass stick model and the equivalent fixed-base model in OpenSees (EFB_OpenSees) 356

Table 9.39: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 2137 (isolated basemat); lumped-mass stick model, 2% Rayleigh damping 359

Table 9.40: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 2137 (isolated basemat); lumped-mass stick model, 10% Rayleigh damping 359

Table 9.41: Percentage reduction in means of peak zero-period accelerations (g) for 30 ground motion sets at node 2137 (isolated basemat) obtained using 2% and 10% Rayleigh damping, lumped-mass stick model ... 359

Table 9.42: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310; lumped-mass stick model (ASB), 2% Rayleigh damping 360

Table 9.43: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 310; lumped-mass stick model (ASB), 10% Rayleigh damping 360

Table 9.44: Percentage reduction in means of peak zero-period accelerations (g) for 30 ground motion sets at node 310 (ASB) obtained using 2% and 10% Rayleigh damping, lumped-mass stick model ... 360

Table 9.45: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417 (SCV); lumped-mass stick model, 2% Rayleigh damping 361

Table 9.46: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 417 (SCV); lumped-mass stick model, 10% Rayleigh damping 361
LIST OF TABLES (CONT’D)

Table 9.47: Percentage reduction in means of peak zero-period accelerations (g) for 30 ground motion sets at node 417 (SCV) obtained using 2% and 10% Rayleigh damping, lumped-mass stick model ... 361

Table 9.48: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538 (CIS); lumped-mass stick model, 2% Rayleigh damping .. 362

Table 9.49: Mean peak zero-period accelerations (g) for 30 ground motion sets at node 538 (CIS); lumped-mass stick model, 10% Rayleigh damping ... 362

Table 9.50: Percentage reduction in means of peak zero-period accelerations (g) for 30 ground motion sets at node 538 (CIS) obtained using 2% and 10% Rayleigh damping, lumped-mass stick model .. 362

Table A.1: Single bearing test sequence .. 384

Table A.2: Failure states of bearings under tensile load .. 403

Table B.1: Percentiles of peak horizontal displacement (mm) for 30 ground motion sets; heating effects1 .. 410

Table B.2: Percentiles of peak horizontal shearing force (% W) for 30 ground motion sets; heating effects1, 2 .. 410

Table C.1: Nodes and mass properties for structural model (units: kip, feet, seconds) 415

Table C.2: Element properties for structural model (units: kip, feet, seconds) .. 417

Table C.3: Modal properties of the Auxiliary Shield Building (ASB) .. 420

Table C.4: Modal properties of the Steel Containment Vessel (SCV) .. 421

Table C.5: Modal properties of the Containment Internal Structure (CIS) ... 422

Table C.6: Location of the center of gravities .. 424

Table C.7: Percentiles of peak horizontal displacement (mm) for 30 ground motion sets; simplified model1 .. 426

Table C.8: Percentiles of peak horizontal shearing force (% W) for 30 ground motion sets; simplified model1, 2 .. 426

Table C.9: Percentiles of peak compressive displacement (mm) for 30 ground motion sets; simplified model1 .. 427

Table C.10: Percentiles of peak compressive force (% W) for 30 ground motion sets; simplified model1, 2 .. 427

Table C.11: Percentiles of peak tensile displacement (mm) for 30 ground motion sets; simplified model1 .. 428

Table C.12: Percentiles of peak tensile force (% W) for 30 ground motion sets; simplified model1, 2 .. 428
Table C.13: Percentiles of peak torsion (degrees) for 30 ground motion sets; simplified model¹ ... 429

Table C.14: Percentiles of peak rotation (degrees) about X axis for 30 ground motion sets; simplified model¹ ... 429

Table C.15: Percentiles of peak rotation (degrees) about Y axis for 30 ground motion sets; simplified model¹ ... 429

Table C.16: Percentiles of peak horizontal displacement (mm) for 30 ground motion sets; advanced model¹ ... 430

Table C.17: Percentiles of peak horizontal shearing force (% W) for 30 ground motion sets; advanced model¹, ² .. 430

Table C.18: Percentiles of peak compressive displacement (mm) for 30 ground motion sets; advanced model¹ ... 431

Table C.19: Percentiles of peak compressive force (% W) for 30 ground motion sets; advanced model¹, ² .. 431

Table C.20: Percentiles of peak tensile displacement (mm) for 30 ground motion sets; advanced model¹ ... 432

Table C.21: Percentiles of peak tensile force (% W) for 30 ground motion sets; advanced model¹, ² .. 432

Table C.22: Percentiles of peak torsion (degrees) for 30 ground motion sets; simplified model¹ ... 433

Table C.23: Percentiles of peak rotation (degrees) about X axis for 30 ground motion sets; simplified model¹ ... 433

Table C.24: Percentiles of peak rotation (degrees) about Y axis for 30 ground motion sets; simplified model¹ ... 433

Table C.25: Percentiles of temperature rise (°C) in the lead core for 30 ground motion sets; advanced model ... 434

Table C.26: Percentiles of shear characteristic strength (ratio of initial) for 30 ground motion sets; advanced model¹ ... 434

Table C.27: Number of bearings (of 273) for which buckling is predicted due to each ground motion set at four shaking intensities; advanced model ... 435

Table C.28: Number of bearings (of 273) for which cavitation is predicted due to each ground motion set at four shaking intensities; advanced model ... 436