Abstracts & Keywords


 

Home
Aims & Scope
Editorial Board
Contents & Abstracts
Submitting Your Paper
Copyright & Permissions
Subscriptions and Orders

 

Back Up Next

Investigation of earthquake mechanisms and their impact on certain basic concepts in earthquake engineering and seismology

Men Fulu

Institute of Engineering Mechanics, China Seismological Bureau, Harbin, China

Abstract: In this paper, mantle circulation flow, continental drift, earthquake origin and other mechanical principles are examined as they apply to earthquake engineering, seismology and dynamics of fluid saturated porous medium. The relationship of mantle flow to earthquakes is examined and clarified, and a new model, different from Haskellís, is proposed for the earthquake mechanism. The proposed new model is based on the discovery that two pairs of jump stress and jump velocity will start to act from the fault plane. Records obtained directly from recent earthquakes nearby and right on the fault break show a very large velocity impulse, which verify, indirectly, the new mechanism proposed by the author. Further, at least two physical parameters that characterize the seismic intensity must be specified, because according to the discontinuous (jump) wave theory, at the earthquake source, the stress jump and the velocity jump of particle motion should act simultaneously when a sudden break occurs. The third key parameter is shown to be the break (fracture) propagation speed together with the break plane area. This parameter influences the form of the unloading time function at the source. The maximum seismic stress in and displacement of a building are estimated for two unfavorable combinations of the building and its base ground in terms of their relative rigidity. Finally, it is shown that Biotís theory of wave propagation in fluid saturated porous media is valid only when fluid flow cannot occur.

Keywords: mantle circulation flow; plate motion; earthquake mechanism; wave propagation; break (fracture) propagation; unloading wave; jump wave; building; Biotís theory

Back Up Next

horizontal rule

Copyright© 2009 IEM. Journal of Earthquake Engineering and Engineering Vibration. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without written permission from the Publisher. Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under the terms of a license issued by the National Reproduction Rights Organization of China.