Abstracts & Keywords


Aims & Scope
Editorial Board
Contents & Abstracts
Submitting Your Paper
Copyright & Permissions
Subscriptions and Orders


Back Up Next

A simplified fragility analysis of fan type cable stayed bridges

R. A. Khan1, T. K. Datta2 and S. Ahmad3

  1. Civil Engineering Department, Jamia Millia Islamia, New Delhi-25, India
  2. Civil Engineering Department, Indian Institute of Technology, New Delhi-16, India
  3. Department of Applied Mechanics, Indian Institute of Technology, New Delhi-16, India

Abstract: A simplified fragility analysis of fan type cable stayed bridges using Probabilistic Risk Analysis (PRA) procedure is presented for determining their failure probability under random ground motion. Seismic input to the bridge support is considered to be a risk consistent response spectrum which is obtained from a separate analysis. For the response analysis, the bridge deck is modeled as a beam supported on springs at different points. The stiffnesses of the springs are determined by a separate 2D static analysis of cable-tower-deck system. The analysis provides a coupled stiffness matrix for the spring system. A continuum method of analysis using dynamic stiffness is used to determine the dynamic properties of the bridges .The response of the bridge deck is obtained by the response spectrum method of analysis as applied to multi-degree of freedom system which duly takes into account the quasi static component of bridge deck vibration. The fragility analysis includes uncertainties arising due to the variation in ground motion, material property, modeling, method of analysis, ductility factor and damage concentration effect. Probability of failure of the bridge deck is determined by the First Order Second Moment (FOSM) method of reliability. A three span double plane symmetrical fan type cable stayed bridge of total span 689 m, is used as an illustrative example. The fragility curves for the bridge deck failure are obtained under a number of parametric variations. Some of the important conclusions of the study indicate that (i) not only vertical component but also the horizontal component of ground motion has considerable effect on the probability of failure; (ii) ground motion with no time lag between support excitations provides a smaller probability of failure as compared to ground motion with very large time lag between support excitation; and (iii) probability of failure may considerably increase for soft soil condition.

Keywords: probabilistic risk analysis; fan type cable stayed bridge; fragility analysis; first order second moment

Appendix (pdf 113 kb)

Back Up Next

horizontal rule

Copyright 2009 IEM. Journal of Earthquake Engineering and Engineering Vibration. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without written permission from the Publisher. Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under the terms of a license issued by the National Reproduction Rights Organization of China.