Abstracts & Keywords


 

Home
Aims & Scope
Editorial Board
Contents & Abstracts
Submitting Your Paper
Copyright & Permissions
Subscriptions and Orders

 

 Back Up Next

3D simulation of near-fault strong ground motion: comparison between surface rupture fault and buried fault

Liu Qifang (刘启方)1, Yuan Yifan (袁一凡)1and Jin Xing (金 星)1,2

  1. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
  2. Earthquake Administration of Fujian Province, Fuzhou 350003, China

Abstract: In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BF, the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BF. Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.

Keywords: near fault; surface rupture fault; long period ground motion, 3D simulation

 

Back Up Next

horizontal rule

Copyright© 2009 IEM. Journal of Earthquake Engineering and Engineering Vibration. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without written permission from the Publisher. Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under the terms of a license issued by the National Reproduction Rights Organization of China.